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摘　要：文章研究一类具有不确定控制系数的随机低阶非线性系统的有限时间输出反馈控制问题，提出一种基于尺度变换与动态观

测器增益的控制策略。本研究通过引入坐标变换，将不确定控制系数的非线性影响转化为可调增益，结合改进的齐次控制方法构建状态反馈

控制器，并设计含待定增益的降维观测器，估计不可测状态。进一步提出增益迭代优化机制，动态调整观测器参数以抵消随机扰动与不确定

性，最终基于复合 Lyapunov 函数严格证明闭环系统在概率意义下的全局有限时间稳定性。仿真实验表明，所提方法在控制系数不确定、状态

不可测及随机噪声干扰下仍能实现快速收敛，突破了传统输出反馈控制对确定性模型和固定增益观测器的依赖。
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在现代控制理论中，非线性系统的控制问题是一个备受关注的研究领域，特别是在系统具有随机扰动

和控制系数不确定的情况下［1-4］。这类系统广泛存在于实际工程中，如机械系统、电力系统、生物医学系统

等。然而，由于非线性、随机性和不确定性的存在，对这类系统进行精确控制仍充满挑战。为应对这些挑

战，有限时间控制方法逐渐成为研究热点。与传统的渐近稳定性不同，有限时间控制旨在在有限时间内使

系统状态达到目标值，从而提高系统响应的速度和精度。因此，研究随机非线性系统的有限时间控制具有

深远意义［5-9］。Yin 等人［10］在 Lyapunov 函数框架下对随机非线性系统进行严格的有限时间稳定性分析。随

着李雅普诺夫稳定性理论与齐次系统理论的不断深化与拓展，有限时间控制领域的研究获得了新的理论支

撑，国内外学者围绕其核心问题展开了广泛而深入的研究。上述研究中所考虑的非线性系统的阶数为 r = 1
或 r ≥ 1［11-14］.

早期的控制理论主要集中于线性系统，随着对非线性特性的深入理解，研究者们开始将焦点转向更具

挑战性的非线性控制问题。近年来，随机控制理论的快速发展使得研究者们逐步认识到在控制系数未知的

情况下设计有效控制策略的必要性，尤其是在复杂的非线性系统中。这一领域的研究不仅具有理论价值，

还有助于解决实际工程问题。例如，Shao 等人［15］针对低阶引起的纯连续非光滑场景以及干扰和多个未知非

线性函数带来的负面影响，引入控制增益代替在线设计自适应律，利用齐次支配方法，保持闭环系统的全局

渐近稳定。Shao 等人［16］通过改进的有限时间准则和巧妙的参数重叠选择，证明随机低阶不确定非线性系统

的实际有限时间稳定性。Li 等人［17］通过扩展添加幂积分器技术和特殊的连续观测器设计，明确构造了一个

动态输出反馈控制器，保证系统全局有限时间稳定。Liu 等人［18］通过推广添加幂次积分器技术，构造可实现

的降阶观测器，并利用随机有限时间稳定性准则，设计有限时间输出反馈控制器，保证闭环系统概率有限时
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间稳定。Jiang 等人［19］通过用有限时间随机输入对状态稳定性刻画未测随机逆动态，结合 Lyapunov 函数并加

入幂次积分技术，利用随机有限时间稳定性理论，设计状态反馈控制器，保证随机低阶非线性系统依概率全

局有限时间稳定。Cui 等人［20］通过有限时间随机输入，对状态稳定性刻画未测量随机逆动态，解决具有时变

阶数和随机逆动态的随机低阶非线性系统的有限时间镇定问题。

目前，尽管已有多项研究探讨了随机控制的基本理论与应用，但在实际工程中面临复杂环境和不确定

性时，针对其有限时间内的输出反馈控制方法仍显不足。Gao 等人［21］巧妙运用同质支配方法，提出一种系统

的输出反馈控制设计程序，使闭环系统的状态在有限时间内趋于零。Zha 等人［22］通过添加一个幂积分器技

术，首先为标称系统设计一个输出反馈控制器，无需扰动非线性，然后基于齐次支配方法和随机有限时间稳

定性定理，证明了闭环系统的解将在有限时间内收敛到原点。Wang 等人［23］采用动态表面控制方案来处理

问题（这是传统反步法固有的），开发了一种新的输出反馈控制器，以保证受控系统的所有信号都在有限时

间范围内稳定。Zhang 等人［24］研究了基于观测器的随机非严格反馈非线性系统的自适应有限时间神经控制

问题，与现有状态不可测的随机非线性系统的自适应控制研究不同，所提出的控制方案可以保证随机非线

性系统的有限时间稳定性。Wang 等人［25］通过设计模糊状态观测器来测量未知状态，并引入补偿机制来弥

补滤波器引起的误差，提出了一种模糊有限时间命令滤波输出反馈控制方法。

针对具有不确定控制系数的随机低阶非线性系统，在现有研究多局限于确定性模型或依赖状态全可测

假设的背景下，文章聚焦实际工程中普遍存在的状态不可测、控制系数未知及随机扰动耦合难题，提出了一

种融合尺度变换与动态观测器的有限时间输出反馈控制方法。通过引入坐标变换将不确定控制系数的影

响转化为可优化的尺度参数，突破了传统方法对模型精确性的依赖。针对低阶特性与状态不可测性，设计

含迭代增益调整机制的降维观测器，解决了固定增益观测器在扰动下误差累积的稳定性瓶颈。进一步结合

复合 Lyapunov 函数与随机有限时间稳定性理论，证明了闭环系统的概率全局收敛性，为机械臂、电力系统等

实际场景中传感器受限的低阶非线性控制提供了兼具理论严谨性与工程适用性的新框架。

1 系统描述

文章研究一类不确定控制系数的随机低阶非线性系统

dx1 = m1 ( )t xr2dt + f1 ( )t, x, u dt + gT1 ( )t, x, u dω
⋮
dxn-2 = mn-2 ( )t xrn-1dt + fn-2 ( )t, x, u dt + gTn-2 ( )t, x, u dω
dxn-1 = mn-1 ( )t xrndt
dxn = mn ( )t urdt
y = x1

（1）

其中，x = ( )x1,…,xn T ∈ ℝn，u ∈ ℝ 和 y ∈ ℝ 分别表示系统的状态变量，控制输入和输出变量。状态变量 x是不

可量测的。系统阶数 r ∈ ℝ<1
odd ≜ { }θ1

θ2
|θ1和θ2为正奇整数且满足θ1 < θ2 ，mk表示不确定控制系数，其中，k = 1,…n. 

ω为一个定义在全概率空间 { }Ω, F, P 上的 ι-维标准维纳过程，其中 Ω 是采样空间，F 是一个σ-域，P是一个

概率测度。漂移项 fi:ℝn → ℝ 和扩散项gi:ℝn → ℝι是连续的且满足 fi ( )0,0,0 = 0, gi ( )0,0,0 = 0, i = 1,…,n - 2.
假设 1 对于系统中的漂移项和扩散项，存在两个正常数 ρ和ϕ，对 i = 1,⋯,n - 2，有以下不等式

|| fi ( )t,x,u ≤ ρ∑
j=i+2

n

|| xj
r

（2）

 gi ( )t,x,u ≤ ϕ∑
j=i+2

n

|| xj
r͂

（3）

其中，r为系统的幂次，r͂ = 1 + r
2 . 
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假设 2 存在正常数-m和
-m使得

-m ≤ mi ≤ -m , i = 1,…,n （4）
考虑具有如下形式的随机非线性系统

dx = f ( )x dt + gT ( )x dω （5）
其中，x ∈ ℝn 为状态向量；ω 定义如式（1）；fi:ℝn → ℝ 与 gi:ℝn → ℝn×r 是连续的，且 ∀t ≥ 0 时满足 f ( )0 = 0 与

g ( )0 = 0. 对于一个C2 函数V ( )x ∈ ℝn，作用于系统的微分算子 L 定义为

LV ( )x = ∂V ( )x
∂x f ( )x + 1

2 Tr{ }gT ( )x ∂2V ( )x
∂x2 g ( )x （6）

定义 1［7］ 系 统（5）的 平 凡 解 在 概 率 上 是 有 限 时 间 稳 定 的 ，如 果 存 在 一 个 解 表 示 为 x ( )t ; ξ0 ，对 于

∀ξ0 ∈ ℝn和以下性质成立：

（1）概率上的有限时间吸引：若随机系统对于初始值 ∀ξ0 ∈ ℝn，记作 x ( )t ; ξ0 ，都存在一个解（无论是强解

还是弱解）；此外，对每一个任意值 x* ∈ ℝn \ { }0 ，首次到达时间 τx* = inf { }t:x ( )t ; x* = 0 = inf { }t: x ( )t ; x0 = 0
（也被称为随机稳定时间）是几乎肯定有限的，即P { }τξ0 < ∞ = 1；

（2）依 概 率 稳 定 ：对 于 每 一 对 ε ∈ ( )0,1 且 r > 0，存 在 一 个 δ = δ ( )ε,r > 0，每 当 || ξ0 < δ 时 ，

P{ }|| x ( )t ; ξ0 < r,∀t ≥ 0 ≥ 1 - ε成立，则称系统（5）的平凡解是依概率有限时间稳定的。

首先，引入坐标变换

ηi = xi p-ςi, i = 1,...,n （7）
其中，p ≥ 1 为常数。ς1,…,ςn被定义为 ςn = 1，ςk = ςk+1r + 1，k = 1,…n - 1. 然后将系统（1）变换为

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

dηi ( )t = ci ( )t p-1ηri+1 ( )t dt + f̄ i ( )t,η,u dt + ḡi ( )t,η,u dω
dηn-1 ( )t = cn-1 ( )t p-1ηrn ( )t dt
dηn ( )t = cn ( )t p-1ur ( )t dt
y = η1

（8）

其中， f̄ i ( )⋅ = p-ςi fi ( )⋅ , ḡi ( )⋅ = p-ςi gi ( )⋅ , i = 1,...,n - 2,η ( )t = ( )η1 ( )t ,...,ηn ( )t T ∈ ℝn.
假设 3 对于幂 ςi和 ςj，i = 1,⋯,n - 2 ; j = i + 2,⋯n，有

ì
í
î

ςj r - ςi < -1 - rn-1

ςj ( )1 + r - 2ςi < -1 - rn-1 （9）
假设 4 对于每个 i = 1,⋯,n - 2，下列不等式成立

|| f̄ i ( )⋅ ≤ p-1-rn-1 ρ̄1∑
j=2

n

|| ξj
r

 ḡi ( )⋅ 2 ≤ p-1-rn-1 ϕ̄1∑
j=2

n

ξj 1+r
（10）

其中， ρ̄1,ϕ̄1 是两个正常数。

假设 5 存在两个正常数 ρ̄2,ϕ̄2，使得

∑
i=1

n-2 ∂Vn∂ηi f̄i ≤ p-1-rn-1 ρ̄2∑
j=1

n

ξ 1+r
j

1
2∑

i=1

n-2




 






ḡi - ∑
k=1

i-1 ∂αi-1∂ηk ḡk
2

≤ p-1-rn-1 ϕ̄2∑
j=2

n

ξ 1+r
j

（11）

其中，假设 3~5 的存在旨在更好地支持控制器的构造，并确保在控制器设计过程中，负项系数中控制增益的

幂次大于正项的幂次。通过适当选择控制增益 p，可以有效抵消不确定非线性和 Hessian 项带来的负面影

响，从而增强控制器的设计效果。
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2 主要结果

引理 1［8］ 假设存在正定、径向无界 Lyapunov 函数 V ( )x ∈ C2 满足非负、径向无界，如果系统（5）是自治

的且 LV ( )x ≤ 0，那么对于任意初始值，系统（5）有一个解。

引理 2［7］ 对于系统（5），若存在一个C2Lyapunov 函数V:ℝn → ℝ+ 时正定的固有函数，且存在两个κ∞函数

β1, β2 使得

β1 ( )|| x ≤ V ( )x ≤ β2 ( )|| x ,LV ( )x ≤ -α ( )V ( )x γ

对于所有 x ∈ ℝn，t ≥ 0 且实数α > 0, 0 < γ < 1，则系统（5）的平凡解是有限时间吸引且概率稳定的。

引理 3［1，3］ 对于a,b ∈ ℝ, r ≥ 1 有

|| a + b r ≤ 2r-1 || ar + br , || a - b r ≤ 2 r-1
r || a - b 1

r

( )|| a + || b
1
r ≤ || a

1
r + || b

1
r ≤ 2 r-1

r ( )|| a + || b
1
r , |

|
||||

|
|
|||| a

1
r - b1

r ≤ 2 r-1
r || a - b 1

r

对于任意 r > 0 和a1,...,an ∈ ℝ，有 ( )|| a1 + ...+ || an
r ≤ max { }nr-1,1 ( )|| a1

r + ...+ || an
r .

引理 4［1，3］ 设 c,d是正实数。对于a,b ∈ ℝ 和任意正实数μ ( )a,b ，有

|| a c || b d ≤ c
c + d μ ( )a,b || a c+d + d

c + d μ
- cd ( )a,b || b c+d

定理 1 在满足假设 1、假设 2 和假设 5 时，对于随机非线性系统（1），构造相应的观测器和输出反馈控制

器，则系统（1）对任何初始数据都有解，且系统（1）的原点在概率上是有限时间稳定的。

接下来将通过三个步骤证明系统（1）的原点在概率上是有限时间稳定的。

2.1 有限时间状态反馈镇定控制器设计

首先，假设状态变量能量测，考虑系统（8）为标称系统的控制设计，其被描述为

ì

í

î

ïïïï

ïïïï

dηi ( )t = mi ( )t p-1ηri+1 ( )t dt,i = 1,...,n - 1
dηn ( )t = mn ( )t p-1ur ( )t dt
y = η1

（12）

然后，引入坐标变换
ξ1 = η1, α2 = -h1 ξ1
ξ2 = η2 - α2, α3 = -h2 ξ2
ξ3 = η3 - α3, α4 = -h3 ξ3
⋮ ⋮
ξn = ηn - αn, αn+1 = -hn ξn

（13）

其中，1,…,n为正常数，α2,…,αn+1 为稍后确定的虚拟控制律。

接下来利用递归的思想给出控制输入u的具体设计。

第 1 步：V1 = 1
2 ξ 21，根据-m ≤ mi ≤ -m可以得到

LV1 = p-1m1 ξ1ηr2 ≤ -np-1 ξ 1+r1 + p-1m1 ξ1 ( )ηr2 - αr2 + p-1m1 ξ1( )αr2 + n

-m
ξ r1 （14）

选择

α2 ( )η1 = -h1 ξ1 （15）
其中，h1 ≥ ( )n-m

1
r

是个正常数，代入得

LV1 ≤ -np-1 ξ 1+r1 + p-1m1 ξ1 ( )ηr2 - αr2 （16）
第 k步（2 ≤ k ≤ n - 1）：虚拟控制器α2,...,αk-1 被表示为

αl ( )η1,η2,...,ηl-1 = -hl-1 ξl-1,l = 2,...,k - 1 （17）
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可以保证

LVk-1 ≤ -( )n - k + 2 p-1∑
j=1

k-1
ξ 1+r
j + p-1mk-1 ξk-1 ( )ηrk - αrk （18）

显然，当 k=2 时，式（18）变为式（16）. 下面，开始证明 αk 存在，并且式（18）在第 k步也成立。为此，选取

Vk = Vk-1 + 1
2 ξ 2

k，从式（13）到式（18）可以看出

LVk ≤ -( )n - k + 2 p-1∑
j=1

k-1
ξ 1+r
j + p-1mk-1 ξk-1 ( )ηrk - αrk + p-1mk ξkηrk+1

+( )hk-1 p-1mk-1 || ηk
r + ⋯ + hk-1hk-2⋯h1 p-1m1 || η2

r
|| ξk

（19）

根据引理 3、引理 4 和 0 ≤ mk-1 ≤ m̄，可以得到

              p-1mk-1 ξk-1 ( )ηrk - αrk + ( )hk-1 p-1mk-1 || ηk
r + ⋯ + hk-1hk-2⋯h1 p-1m1 || η2

r
|| ξk  

≤ p-1m̄ || ξk-1 21-r || ξk
r + hk-1 p-1m̄ ( )|| ξk

r + hrk-1 || ξk-1
r

|| ξk + ⋯ + hk-1⋯h1 p-1m̄ ( )|| ξ2
r + hr1 || ξ1

r
|| ξk

              ≤ p-1∑
j=1

k-1
ξ 1+r
j + p-1λk ξ 1+r

k （20）
其中，λk是一个常数。因此，在第 k个虚拟控制器可以表示为

αk+1 ( )η1,η2,...,ηk = -hk ξk （21）
其中，hk ≥ ( )( )n - k + 1 + λk -m

1
r 为正常数。

将式（20）和式（21）代入式（19）中，可以得到

LVk ≤ -( )n - k + 1 p-1∑
j=1

k-1
ξ 1+r
j + p-1mk ξk ( )ηrk+1 - αrk+1 （22）

第n步：根据归纳法，式（22）在n步仍然成立。因此，在这一步选取

Vn = ∑
i=1

n 1
2 ξ 2

i 和u = αn+1 = -hn ξn = -∑
j=1

n ( )∏
k=j

n

hk ηj （23）
可以得到

LVn = ∑
j=1

n-1 ∂Vn∂ηj p
-1mjηrj+1 + ∂Vn∂ηn p

-1mnur ≤ -p-1∑
j=1

n

ξ 1+r
j （24）

其次，对原系统进行构造实际控制器。选取

V = Vn = ∑
i=1

n 1
2 ξ 2

i （25）
然后，计算式（15）沿着系统式（8）的微分可以得到

LV = ∑
j=1

n-2 ∂V
∂ηj ( )p-1mjηrj+1 + f̄ i + ∑

j=1

n-2 1
2






 





-g

i
- ∑

k=1

j-1 ∂αi-1∂ηk gk
2

+ ∂V
∂ηn-1

p-1mn-1ηrn + ∂V
∂ηn p

-1mn μr （26）
估计式（26）中等式右边的每一项。根据第一部分，如果选择实际控制器

u = -∑
j=1

n ( )∏
k=j

n

hk ηj = -∑
j=1

n ( )∏
ck=j

n

hk p-θj xj （27）
由式（24）可以看出

∑
j=1

n-1 ∂V
∂ηj p

-1mjηrj+1 + ∂V
∂ηn p

-1mn μr ≤ -p-1∑
j=1

n

ξ 1+r
j （28）

那么由假设 5 可以看出

∑
i=1

n-2 ∂V
∂ηj f̄i ≤ p-1-rn-1 ρ̄2∑

j=1

n

ξ 1+r
j

1
2∑

i=1

n-2




 






ḡi - ∑
k=i

i-1 ∂αi-1∂ηk ḡk ≤ p-1-rn-1 ϕ̄2∑
j=2

n

ξ 1+r
j

（29）

44



张佳鹏，等：具有不确定控制系数的随机低阶非线性系统有限时间输出反馈控制

将式（27）~式（29）代入式（26）可得

LV ≤ -p-1∑
j=1

n

ξ 1+r
j + p-1-rn-1 ρ̄2∑

j=1

n

ξ 1+r
j + p-1-rn-1 ϕ̄2∑

j=2

n

ξ 1+r
j

≤ p-1-rn-1 ( )prn-1 - ϕ̄2 - ρ̄2 ∑
j=1

n

ξ 1+r
j

（30）

选取 prn-1 - ϕ̄2 - ρ̄2 > 1 可得

LV ≤ -p-1( )p-rn-1∑
j=1

n

ξ 1+r
j （31）

2.2 观测器设计

由于状态变量 ( )x2,...,xn 不可量测，即 ( )η2,...,ηn 不可量测。对系统（8）设计n - 1 维的观测器

ż̂ i = p-1mi ( )η̂ri+1 - Li-1 η̂ri ,i = 2,…,n - 1
ż̂n = p-1mn ( )ur - Ln-1 η̂rn-1

（32）
其中，Li > 1 是待设计的参数，称为观测器增益。

误差变量 ei = zi - ẑ i,i = 2,...,n. 其中
zi = miηi - Li-1ηi-1,miη̂i = ẑ i + Li-1 η̂i-1

dei = p-1[ ]mi ( )ηri+1 - η̂ri+1 - Li-1 ( )ηri - η̂ri dt

den = -p-1Ln-1 ( )ηrn - η̂rn dt （33）
构造 Lyapunov 函数

Wk = e222 + ⋯ + e2
n2 （34）

对其作用无穷小算子可得

LWn = ∑
i=2

n-1
[ ]p-1ei ( )mi ( )ηri+1 - η̂ri+1 - Li-1 ( )ηri - η̂ri + en[ ]-p-1Ln-1 ( )ηrn - η̂rn

= p-1é
ë
êêêê

ù

û
úúúú-∑

i=2

n

eimiLi-1 ( )ηri - η̂ri + ∑
i=2

n-1
eimi ( )ηri+1 - η̂ri+1

（35）

接下来对其进行放大，由上述误差变量 ei的定义以及对其进行简单的拆分可得

  -∑
i=2

n

eimiLi-1 ( )ηri - η̂ri = -∑
i=2

n

eimiLi-1( )ηri - ( )ηi - ei - Li-1 ( )ηi-1 - η̂i-1
r

                             = -∑
i=2

n

eimiLi-1éë
ù
ûηri - ( )ηi - ei r - ∑

i=3

n

eimiLi-1éë
ù
û

( )ηi - ei r - ( )ηi - ei - Li-1 ( )ηi-1 - η̂i-1
r

（36）
根据 ei = mi ( )ηi - η̂i - Li-1 ( )ηi-1 - η̂i-1 ，并由引理 2 可得

eimiLi-1éë
ù
û

( )ηi - ei r - ( )ηi - ei - Li-1 ( )ηi-1 - η̂i-1
r ≤ 21-rmi Li-1 || ei || Li-1 ( )ηi-1 - η̂i-1

r
（37）

当 ei ≠ 0 时，令 t = ηi
ei

,υ = L- 1
1+r
i-1 ，得

-eimiLi-1éë
ù
ûηri - ( )ηi - ei r ≤ L r-1

r+1
i-1 e-1

i ηr+1
i - L ( )Li-1 er+1

i                                         
                                                                         ≤ L r-1

r+1
i-1 ( )λi,1er+1

i + ρi,i-1,1ηr+1
i-1 + ρi,i,1ηr+1

i - L ( )Li-1 er+1
i （38）

当 ei = 0 时，上式显然成立，将式（37）和式（38）代入式（36）可得

-∑
i=2

n

miei Li-1 ( )ηri - η̂ri ≤∑
i=2

n

mi
é
ë
êêêê ù

û
úúúúL

r-1
r+1
i-1 ( )λi,1er+1

i + γi,1 ( )ηr+1
i-1 + ηr+1

i - L ( )Li-1 er+1
i +∑

i=3

n 21-rmi Li-1 || ei || Li-1 ( )ηi-1 - η̂i-1
r
（39）

其中，L ( )Li-1 : = ( )2r - 1 L
2r

1+r
i-1 ,λi,1 > 0, ρi,i-1,1 > 0, ρi,i,1 > 0 是设计常数。

通过简单的不等式放大和引理 3、引理 4 得

∑
i=2

n-1
eimi ( )ηri+1 - η̂ri+1 ≤ ∑

i=2

n-1
|| ei mi21-r || ηi+1 - η̂i+1

r
（40）
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代入得

LWn ≤ p-1é
ë
êêêê∑
i=2

n

mi( )L
r-1
r+1
i-1 ( )λi,1er+1

i + γi,1 ( )ηr+1
i-1 + ηr+1

i - L ( )Li-1 er+1
i

ù

û
úúúú+∑

i=3

n 21-r || ei miLi-1 || Li-1 ( )ηi-1 - η̂i-1
r + ∑

i=2

n-1 21-r || ei mi || ηi+1 - η̂i+1
r

（41）

对式（41）进行处理，由 ei的定义并通过递推易得

ηi+1 - η̂i+1 = ei+1 + Li ( )ηi - η̂i = ⋯ = ei+1 + Liei + ⋯ + Li⋯L2 ( )η2 - η̂2 （42）
对不等式（42）进行放大

∑
i=3

n 21-r || ei mi || Li-1 ( )ηi-1 - η̂i-1
r + ∑

i=2

n-1 21-r || ei mi || ηi+1 - η̂i+1
r ≤ h̄2 ( )Ln-1,⋯,L2 er+12 + ⋯ + h̄n-1 ( )Ln-1 er+1

n-1 + λn,3er+1
n（43）

其中，h̄2 ( )⋅ ,…,h̄n-1 ( )⋅ 是关于变量的多项式函数，将式（41）和式（43）代入最终得到

                  LWn ≤ p-1{éëêêêê ù
û
úúúú-L ( )Ln-1 + L r-1

r+1
n-1λn,1 + λn,3 er+1

n + é
ë
êêêê ù

û
úúúú-L ( )Ln-2 + L r-1

r+1
n-2λn-1,1 + h̄n-1 ( )Ln-1 er+1

n-1

                     +⋯ + é
ë
êêêê ù

û
úúúú-L ( )L1 + L r-1

r+11 λ2,1 + h̄2 ( )Ln-1,⋯,L2 er+12 + L r-1
r+11 ρ2,1,1ηr+11 + ( )L

r-1
r+11 ρ2,2,1 + L r-1

r+12 ρ3,2,1 ηr+12

                     }+⋯ + ( )L
r-1
r+1
n-2 ρn-1,n-1,1 + L r-1

r+1
n-1 ρn,n-1 ηr+1

n-1 + L r-1
r+1
n-1 ρn,nηr+1

n （44）
2.3 观测器增益设计

因为η2,…,ηn不可量测，通过上述观测器设计，根据确定性等价原理，用 η̂i,i = 2,…,n，对控制器进行估计

可以得到

u = -( )h1η1 + h2 η̂2 + ⋯hnη̂n ,η̂1 = η1 （45）
选取李雅普诺夫函数Un ( )ξ1,…, ξn,e2,…,en = Vn ( )ξ1,…, ξn + Wn ( )e2,…,en . 综合式（31）和式（44）可得

LUn ≤ p-1ìí
î

-p-rn-1∑
j=1

n

ξ r+1
j + é

ë
êêêê ù

û
úúúú-L ( )Ln-1 + L r-1

r+1
n-1λn,1 + λn,3 er+1

n + é
ë
êêêê ù

û
úúúú-L ( )Ln-2 + L r-1

r+1
n-2λn-1,1 + h̄n-1 ( )Ln-1 er+1

n-1

+⋯ + é
ë
êêêê ù

û
úúúú-L ( )L1 + L r-1

r+11 λ2,1 + h̄2 ( )Ln-1,⋯,L2 er+12 + L r-1
r+11 ρ2,1,1ηr+11 + ( )L

r-1
r+11 ρ2,2,1 + L r-1

r+12 ρ3,2,1 ηr+12

}+⋯ + ( )L
r-1
r+1
n-2 ρn-1,n-1,1 + L r-1

r+1
n-1 ρn,n-1 ηr+1

n-1 + L r-1
r+1
n-1 ρn,nηr+1

n

（46）

记 S ( )Li = L ( )Li - λi+1,1L
r-1
r+1
i = ( )2r - 1 L

2r
r+1
i - λi+1,1L

r-1
r+1
i , ( )Li > 1 ，其中，r ∈ ( )0,1 , λi+1,1 > 0 是参数，显然对于任意的

Li > 1，有S′( )Li > 0,即S ( )Li 关于Li单调递增。对于给定的r，通过选择合适的λi,1 > 0使S ( )1 = 2r - 1 - λi,1 > 0. 此
时对任意的Li > 1 有S ( )Li > 0. 

首先选择足够大的增益 Ln-1 满足 S ( )Ln-1 ≥ max{ }1
2 ,λn,3,λn,4 , λn,2L

-1-r
1+r
n-1 ≤ 1

8 . 接下来，选择足够大的 Ln-2 满足

S ( )Ln-2 ≥ max{ }1
2 ,h̄n-1 ，λn-1,2L

-1-r
1+r
n-2 ≤ 1

8 . 同理，根据已经固定的 Li+1,⋯,Ln-1 选择 Li使其满足 S ( )Li ≥ max{ }1
2 ,h̄i+1 ，

λi+1,i+1Li ≤ 1
8. 最后，选择合适的 p-1 使其满足 p-1 ≥ 1.

通过上述增益的选择，显然可以得到

LUn ≤ -( )∑
i=1

n

γi ξ r+1
i + ∑

i=2

n

δi er+1
i （47）

其中，γi > 0,i = 1,…,n,δi > 0,i = 2,…,n是常数。由Un ≤ ∑
i=1

n 1
2 ξ 2

i + ∑
i=2

n 1
2 e2

i，通过反复应用引理 3 可得

LUn ≤ -γU 1+r
2 ,0 < 1 + r

2 < 1 （48）
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其中，γ > 0 是常数。因为 0 < 1 + r
2 < 1，由引理 2 可知闭环系统（1）是依概率全局有限时间稳定。

3 仿真算例

不失一般性，考虑如下随机非线性系统

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

dx1 = m ( )t x 3
51 dt + 3

10 sin ( )x3 dt + 1
8 x

4
53 dω

dx2 = x 3
53 dt

dx3 = u 3
5 dt

（49）

其中，r = 3
5. 因此，易验证假设 1 是满足的，其中 ρ = 3

10 且 c = 1
8. 在控制器设计中选取m ( )t = 3 - sin ( )t ，验证

假设 2 也是满足的，其中-m = 2，m̄ = 4.
构造 其 二 阶 观 测 器 ż̂2 = p-1m ( )t ( )η̂

3
53 - L1 η̂

3
52 ，ż̂3 = p-1m ( )t ( )v

3
5 - L2 η̂

3
52 . 选 择 实 际 的 控 制 器为

u = -( )h1η1 + h2 η̂2 + h3 η̂3 = -48.6η1 - 21.08η̂2 - 6.32η̂3.
在仿真中选取初始条件为 [ ]x1 ( )0 , x2 ( )0 , x3 ( )0 T = [ ]-0.5,-3,3 T. 闭环系统（49）的响应曲线（图 1~图 3）验

证了所提出设计方案的有效性。
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图 1 系统状态响应曲线
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图 2 观测器状态响应曲线
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4 总结

文章针对具有不确定控制系数的随机低阶非线性系统，提出一种基于尺度变换与动态观测器设计的有

限时间输出反馈控制策略。引入尺度参数对原系统进行坐标变换，将不确定控制系数的非线性影响转化为

可优化的增益参数，并结合改进的齐次控制方法设计状态反馈控制器。进一步构造含待定增益的降维观测

器，利用迭代算法动态调整观测器增益，有效解决了状态不可测与扰动累积的难题。理论分析中，利用复合

Lyapunov 函数严格证明了闭环系统在概率意义下的全局有限时间稳定性，仿真实验验证了所提方法在参数

变动与随机噪声下的鲁棒性。文章的创新性体现在将尺度变换与动态观测器增益迭代机制相结合，突破传

统方法对控制系数确定性假设的依赖，为低阶随机系统的工程应用，如机械臂控制、电力调节等提供新思

路。未来研究可进一步探索非齐次扰动或时变控制系数的扩展场景，并尝试将算法框架推广至高阶或分数

阶非线性系统，同时需在嵌入式平台中验证实时性与计算效率的工程可行性。
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The Finite-time Output Feedback Control for Stochastic Low-order Nonlinear 
Systems with Uncertain Control Coefficients
ZHANG Jia-peng1，SONG Gong-fei1，2*，XIA Yong-kang1

（1.School of Automation，Nanjing University of Information Science and Technology，Nanjing，Jiangsu，

210044，China； 2.Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment 
Technology，Nanjing，Jiangsu，210044，China）

Abstract：This paper addresses the finite-time output feedback control problem for a class of stochastic 

low-order nonlinear systems with uncertain control coefficients and proposes a control strategy based on scaling 

transformation and dynamic observer gains. By introducing coordinate transformations，the nonlinear effects of 

uncertain control coefficients are converted into adjustable gains，enabling the construction of a state feedback 

controller via an improved homogeneous control method. A reduced-order observer with undetermined gains is 

designed to estimate unmeasurable states，while an iterative gain optimization mechanism is further proposed to 

dynamically adjust observer parameters for counteracting stochastic disturbances and uncertainties. The global 

finite-time stability of the closed-loop system in a probabilistic sense is rigorously proven using a composite 

Lyapunov function. Simulation results demonstrate that the proposed method achieves rapid convergence under 

uncertain control coefficients，unmeasurable states，and stochastic noise disturbances，thereby overcoming the 

dependency of traditional output feedback control on deterministic models and fixed-gain observers. This work 

provides a robust theoretical framework for practical applications such as mechanical control and power regulation. 

Keywords：Uncertain control coefficient；Low-order；Finite-time；Output feedback stabilization；Observer gain
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