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摘　要：土地利用/覆被演变研究是解析人地关系的重要科学议题，其精准监测对区域可持续发展决策具有支撑作用。本研究以克里

雅绿洲为研究对象，基于高分三号（GF-3）全极化合成孔径雷达数据与 Landsat 8-OLI 多光谱数据，结合野外实测土壤理化参数，构建多源遥感

协同分类体系。将土壤盐渍化分级（轻度、中度、重度）作为土地覆被质量的核心量化指标，与土地利用类型（耕地、植被、水体、裸地）共同构成

分类框架。通过应用八种极化分解方法、随机森林特征优选算法及 U-Net 深度学习模型，系统探讨干旱区绿洲土地利用/覆被分类的最优

解译方案。实验结果表明，相较于传统影像分类算法，U-Net 深度学习框架在分类精度指标上呈现显著优势，其总体分类精度提升至 78.21%，

Kappa 系数达 0.72. 该模型有效融合雷达后向散射特征、光学光谱特征及土壤有机质含量等理化参数，通过多维特征空间构建解决植被-盐渍

化混合像元的同谱异质问题。本研究提出的多源数据融合分类方法为绿洲生态系统监测提供了新的技术支撑，其分类结果的空间异质性解

析能力为绿洲土地退化防治与资源管理决策提供了可靠的科学依据。
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土地利用/覆被变化是全球环境变化研究的核心内容之一，对于理解人类活动与自然环境之间的相互作

用具有重要意义［1］。近年来，遥感技术的发展为土地利用/覆被分类提供了新的视角和方法［2］，特别在合成孔

径雷达（SAR）在地物分类方面的研究，为地表覆盖的精确识别和分类提供了可能。卷积神经网络（CNN）因

其在图像分割任务中的卓越性能而受到广泛关注［3］。有效利用雷达数据和深度学习模型可以提高土地利

用/覆被分类的精度。

当前，卫星影像可分为两类：一类是高光谱影像，另一类是高分辨影像。因常规分类法的限制，影像无

法被精确归类。伴随着深度学习的出现，与传统的分类方法相比，获得了非常好的分类结果［4］。Shimoni 等

人［5］为强调不同的地物类型，将提出的不同雷达极化分解方法均应用于研究土地利用/覆被分类方面，且取

得了较好的分类结果。Krizhevsky 等人［6］在对大型自然图像进行分类时，第一次使用了卷积神经网络，其分

类准确率与常规的图像分类算法相比，有显著的提高，由此引发了对卷积神经网络的研究热潮。此后，

Girshick 等人［7］提出了 R-CNN（Regions with Convolutional Neural Network Features，R-CNN）模型，奠定了使用

卷积神经网络进行目标识别的基础。但目前，结合雷达数据极化分解和卷积神经网络算法进行地物分类的

研究较少。

克里雅绿洲地处干旱-半干旱区，地理位置、地貌环境特殊，具有明显的降水稀少、蒸发量高等特点［8］。

适时对克里雅绿洲进行土地情况监测，有利于更科学地保护土壤资源、防治土壤盐渍化和荒漠化。本研究

对克里雅绿洲土地利用/覆被情况进行精确监测，有助于更好地理解该地区的土地资源状况，为制定土地管
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理和保护政策提供科学依据。此外，文章还探讨了深度学习模型在处理雷达数据时的优势和局限性，为未

来进行相关研究提供了经验和启示。

1 研究数据与方法

1.1 研究区概况

克 里 雅 绿 洲 位 于 我 国 西 北 干 旱 区 塔 里 木 盆 地 南 部 的 和 田 地 区 东 部 ，东 经 81°09'~82°14'，北 纬

35°14'~39°30'［8］. 西邻策勒县，东连民丰县，南部为昆仑山，北接塔克拉玛干沙漠，总面积约为 4 万平方公

里［9］。克里雅河是典型的新疆内陆河，其源于昆仑山北麓，消失于塔克拉玛干沙漠腹地［8］，河流尾部形成了

“世界沙漠旅游景观之最”，是我国“一带一路”倡议实施的重点区域，对建设我国西北地区生态文明保护屏

障具有重要的意义［10］。

1.2 数据获取及处理

1.2.1 雷达数据获取及处理

本研究所使用的 GF-3 雷达卫星数据来自我国高分卫星系列中首个搭载微波波段的合成孔径雷达卫

星［11］。本研究获取并使用 2022 年 5 月 4 日高分三号全极化数据，利用 PolSAR Pro 5.1 和 ENVI 5.3 及 IDL 三个

软件对原始影像进行预处理，主要包括滤波处理、地理编码等预处理方法。

EDVI IDL PolSAR Pro 5.1 EDVI GF-3 Geocoding
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图 1 GF-3 数据预处理

1.2.2 光学数据获取及处理

本研究的光学影像数据来源于地理空间数据云（https://www.gscloud.cn/），选取 2022 年 5 月 4 日 Landsat8
光学遥感数据。相较于合成孔径雷达数据，光学影像的显著优势在于其丰富的光谱分辨能力［12］，其能够通

过特定波段组合有效表征植被光合活性、地表水分含量及裸露地物光谱特征，这为构建 NDVI（归一化植被

指数）、NDWI（归一化水体指数）及 SI（盐渍化指数）等关键生态参量提供了物理基础。本研究采用 ENVI 5.3
遥感处理平台，通过辐射定标将原始 DN 值转换为大气顶层辐射亮度，消除传感器自身辐射响应差异。进行

大气校正，精确剔除瑞利散射与气溶胶影响，最终获取地表真实反射率数据。通过系统预处理，确保后续构

建的 NDVI、NDWI 等指数能够准确表征绿洲植被覆盖度、水体分布及土壤盐渍化程度，为多源遥感协同分类

奠定可靠的数据基础。

（1）植被指数提取。植物指标对植物生物量的敏感性高于单一光谱数据［13］。本研究对 Landsat 8-OLI 数

据提取了归一化植被指数（Normalized Difference Vegetation Index，NDVI）。归一化植被指数由 Rouse［13］提出，

如式（1）所示

NDVI = NIR - Red
NIR + Red

（1）
其中，NIR 为近红外波段反射值；Red 为红光波段反射值。

（2）水体指数提取。水体指数是一种基于可见光绿光波段和近红外波段的归一化比值指数，可以较好

地反映水体在遥感影像中的水体信息。本研究对 Landsat 8-OLI 数据提取了归一化水体指数（Normalized 
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Difference Water Index，NDWI）. NDWI 对植被冠层水分信息敏感度较强，由 Mcfeeters 在 1996 年提出［14］，如

式（2）所示

NDWI = Green - NIR
Green + NIR

（2）
其中，Green 为绿光波段反射值；NIR 为近红外波段反射值。

（3）盐分指数提取。选取对研究区土壤盐分含量反应敏感的光谱指数组合是进行土壤盐渍化情况定量

研究的重要前提。土壤盐分指数（Salt Index，SI）是 Elhag 提出的 11 种盐分计算公式之一［15］，如式（3）所示

SI = Red × Green （3）
其中，Red 为红光波段反射值；Green 为绿光波段反射值。

1.2.3 极化分解

雷达卫星在发出电磁波时，受到对地面目标产生的变极化效应，将返回雷达［16］。在这一改变发生之后，

雷达数据将以极化散射矩阵的方式被储存［17］。本研究的目标研究区所包含的地物信息较为丰富。为更好

地选择最优特征分量，采用相干目标分解和非相干目标分解用于雷达数据的极化分解，共选取八种极化目

标分解方式，分别为 Freeman 分解、Yamaguchi 分解、Van Zyl 分解、H/A/α 分解、An&Yang 分解、Huynen 分解、

Barnes1 分解和 Holm1 分解。

Freeman 分解作为非相干分解的经典方法［18］，通过表面散射、二次散射和体散射三分量模型，建立物理

意义明确的散射机理解析框架，其算法鲁棒性已在 30 余年研究中得到广泛验证［19］。Yamaguchi 分解则在此

基础上引入螺旋散射分量，突破传统三成分模型的局限性，尤其适用于存在复杂几何结构的场景［20］。综合

考虑，本研究将以分析 Freeman 分解和 Yamaguchi 分解这两种方式为主。

（1）Freeman 分解。Freeman 分解基于奇次散射、偶次散射和体散射，三种简单散射机制定义了三种散射

矩阵［16］。将全极化合成孔径雷达数据的协方差矩阵分解后得到三种协方差矩阵（DDL、ODD、VOL）。

Freeman 极化分解方法利用简化复杂的地面情况来有效提取地物信息，而 Freeman 分解则在目标具有反射对

称性的假设中处理［19］。

C3 = fsCodd + fdCdbl + fvCvol （4）
其中，fs 、 fd以及 fv分别代表对应三个分量的贡献值；Codd 、Cdbl 以及 Cvol代表三个分量的散射模型。

（2）Yamaguchi 分解。Yamaguchi 等人［20］ 拟采用极化分解算法，通过在非均匀分布条件下加入螺线散射

机理，将该算法扩展到非均匀分布条件下，从而有效克服现有算法存在的过估量问题。Yamaguchi 极化分解

模型［21-22］在实测数据中目标存在较大而不具有反射对称性的数值情况。为解决此类目标出现的问题，

Yamaguchi 极化分解模型依据 Freeman 极化分解扩展新加入四种分解方法，因此 Yamaguchi 分解常用于处理

具有非对称性的散射情况的目标数据。

C 3 = fsCodd + fdCdbl + fvCvol + fhChlx （5）
其中， fs 、 f d、 fv 以及 fh 分别代表布拉格散射、偶次散射、体散射以及螺旋体散射四个分量的贡献值［21］。

1.2.4 野外数据获取及处理

为保证野外实测数据的准确性，研究团队在采样时选取未降雨且干燥晴朗的天气，采用点选取在土层

表面和地下 0~100 cm 处的土壤样品。并在采集样品时记录土壤样品所在的 GPS 坐标，对土壤类型、周围环

境等情况进行记录。为与本研究所使用的遥感数据成像时间配合，所选取的野外实测数据为 2021 年 7 月 9 日

至 7 月 15 日在研究区范围进行的野外样本采集工作所得出的数据。

2 研究方法

2.1 最优特征选择

本研究基于随机森林方法和信噪比方法对目标数据进行最优特征分量选择。随机森林（RF）是一种通

过 Bootstrap 再采样的方式，从原始样本中提取多个样本，对每一个 Bootstrap 样本建立一个决策树模型，并将

多个决策树的预测进行合并，选举产生最后的预计［23］。随机森林具有简单易实现且理解不易过拟合等优

点［24］。因随机森林的优点明显，效果良好，在各种数据分析过程中随机森林算法使用频率较高。随机森林
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算法为有放回的随机抽样算法，由此会增加决策树的多样性。因此，本研究借助随机森林对目标数据进行

分析。

2.2 LULC 分类算法

分类系统的建立是进行监督分类和深度学习数据处理的重要部分。本研究以中国国家土地分类标

准［25］为地物分类参考标准，将克里雅绿洲研究区的土地情况分为轻度盐渍化土壤、中度盐渍化土壤、重度盐

渍化土壤，水体、植被、裸地和耕地。

2.3 传统分类算法

图像分类是计算机视觉中非常重要的一种方法，在此过程中需要制定符合研究目标的标签集，并在图

像中选取对应的影像区域进行分类。在传统的机器学习算法中，影像分类要从影像中抽取影像的特性用以

描述影像［26］。

2.3.1 最大似然分类（MLC）

最大似然分类法（Maximum Likelihood Classification，MLC）［27］作为遥感影像解译领域的经典技术，其理论

基础植根于概率统计模型与贝叶斯定理的判别框架。该算法通过构建多维特征空间中的非线性概率决策

边界实现地物类别的精细化识别。其核心原理在于推导基于最大后验概率的判别函数，该函数通过整合光

谱特征的空间分布特性，量化待分类像元与预设类别模板的隶属概率［28］。

2.3.2 随机森林（RF）

随 机 森 林（Random Forest，RF）由 统 计 学 家 Leo Breiman 于 2001 年 开 创 性 提 出 ，其 创 新 性 地 融 合 了

Bootstrap Aggregating 集成框架与随机特征子空间选择策略［23］。该算法通过构建多棵异构决策树形成并行化

集成架构，其中每棵分类回归树（CART）均在双重随机化机制下生成。一方面，采用有放回抽样构建差异化

训练子集（行采样），另一方面，通过随机选取特征维度形成低相关性的特征子空间（列采样）。最终通过多

数投票或均值融合机制集成预测结果，显著提升模型泛化能力。

2.3.3 支持向量机（SVM）

支持向量机（Support Vector Machines，SVM）是建立在统计学理论 VC 唯理论和结构风险最小化原理基

础上的机器学习方法［29-30］。可以简单地将支持向量机机器学习算法总结为一个被约束的二次型规划问题。

在解决非线性、小样本等问题上支持向量机具有明显优势［31-33］。支持向量机是研究遥感影像信息监督分类

的重要方法，相较于其他监督分类，支持向量机具有较为明显的稳定性和稀疏性，这两个特性决定了支持向

量机具有非常可靠的求解结果。

2.4 深度学习分类算法

传统的图像识别技术以浅层次结构模型为主，需要人为对图像进行预处理，这将导致图像识别精确度

降低［34］。深度学习的概念来自对人工神经网络的研究，包含多隐层的多层感知器（MLP），这是一种深度学习

结构。深度学习可以将低层特征进行合并，形成一个更为抽象的高层表达属性类别或特征，从而发现数据

的分布式特征［35］。深度学习可以通过对一种深度非线性网络结构进行学习，从而实现复杂函数近似，对输

入数据的分布式表示进行表征，同时表现出从少量样本集中学习数据集本质特征的强大能力［36-37］。本研究

使用的深度学习算法是监督分类中所包含的卷积神经网络。

U-Net 模型是由 O Ronneberger 等人［36］于 2015 年提出并改进的一种 FCN 模型结构，因其结构清晰对称如

“U”型而得名，结构如图 2 所示。

本研究基于 ArcGIS Pro 软件对目标区域遥感影像实施规则化分块处理，生成尺寸为 512×512 像素的图

像切块，采用 256 像素的重叠步长进行采样。针对深度学习模型对大规模训练样本的需求，在保持标签一致

的前提下，通过数据增强技术扩展数据集，具体实施随机角度旋转、弹性变形及椒盐噪声注入等操作。数据

集按训练集∶验证集∶测试集为 6∶2∶2 的比例进行划分，分别用于模型训练、超参数优化及性能评估。输入网

络的训练样本统一重采样至 320×320×3 维度，并实施最大-最小归一化预处理。

模型训练采用多分类 Dice+0.1×交叉熵损失的组合损失函数，批量大小设置为 10. 数据增强策略包含几何

变换（旋转、缩放、扭曲等空间变换）和像素级增强（高斯模糊、锐化、噪声添加、色彩空间调整等）。优化算法选

用带动量项的 SGD 优化器（动量系数 0.9），初始学习率设置为 1e-4，采用余弦退火学习率衰减策略［33］。训练过
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程实施早停机制：当验证集损失值连续 13个训练周期未出现下降时终止训练，以规避过拟合风险。

3 结果与分析

3.1 光谱指数结果

从图 3 可以看出，NDVI 通过表征植被光合活性，在植被覆盖区提取中表现优越，能够有效区分植被与耕

地。同时，其与盐渍化土壤的反射特性差异可辅助辨别植被覆盖型盐渍化区域。研究区水体在雷达影像中因

镜面散射特性与重度盐渍化土壤光谱混淆，而 Landsat 8-OLI 数据提取的 NDWI 能够显著提升水体识别精度。

重度和中度盐渍化土壤在雷达影像中散射机制相似，但 SI 通过盐分晶体对红光波段的强反射特性，可实现二

者的有效分离。轻度盐渍化土壤因表层植被覆盖呈现高 NDVI与中高 SI组合，与自然植被形成显著分离；重度

盐渍化土壤因地表裸露呈现低 NDVI、高 SI的特征组合，与裸地（低 NDVI、低 SI）形成显著的光谱分离。通过计

算光谱指数，解决单一指数对裸地与盐渍化土壤的分类模糊问题。
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3.2 GF-3 数据极化目标分解及最优特征

雷达影像极化分解结果（图 4）表明，Huynen、Holm1 和 VanZyl 三个极化分解结果对土壤盐渍化程度表现

效果较好；Freeman 3 和 An&Yang 两个极化分解结果对植被、耕地等地物的表现效果较好。雷达影像的去噪

对于目标信息的提取至关重要，信噪比（SNR）分析是评估雷达影像去噪效果的有效手段，有助于选择图像的

最佳特征分量。本研究将信噪比分析结果和随机森林算法作为筛选最优特征分量的重要参考指标。
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图 4 极化分解结果图

本研究借助 ENVI5.3+IDL8.5 软件分别对 24 个分量 GF-3 数据进行信噪比计算（表 1）。信噪比越高，图

像的质量表现越好，雷达数据的去噪声效果越好。故本研究选取数值较大的 Yamaguchi_surf、An&Yang_Dbl、
Holm1_vol、VanZyl_ surf、VanZyl_Dbl、Yamaguchi_Dbl 六个特征分量。

表 1 GF-3 极化特征分量信噪比

surf
vol
Dbl

BAR2
32.9805

145.7760
195.2410

An&Yang
284.6740

91.4847
320.8920

Freeman 3
32.0784
24.7105
64.7380

Holm1
57.1063

350.4800
78.2494

huynen
73.0403
78.6073
84.5021

VanZyl
333.0200
102.2960
361.6520

Yamaguchi
345.2550
115.0750
360.6010

H/A/α
55.6447

126.4870
114.0650

随机森林算法为有放回的随机抽样算法，会增加决策树的多样性。因此本研究借助随机森林对目标数

据 进 行 分 析 。 如 图 5 所 示 ，GF-3 数 据 影 像 24 个 极 化 特 征 分 量 中 共 有 AnYang_Dbl、Freeman_Dbl、
AnYang_vol、HolmT33、Freeman_vol、HuynenT33、VanZyl_vol 这 6 个分量对土壤 EC 值敏感。其特征重要性高

于 80%，即对土壤 EC 值重要性极大的极化分量。

基 于 GF-3 雷 达 数 据 ，结 合 随 机 森 林 算 法 和 信 噪 比 算 法 选 取 共 同 的 An&Yang_Dbl、Freeman_Dbl、

Holm1T33 和 HuynenT33 四个最优特征分量结果（图 6）。
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图 5 GF-3 最优特征选择
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3.3 LULC 分类精度结果对比分析

3.3.1 深度学习分类算法精度结果

本研究以GF-3雷达数据为分类数据，参考Landsat 8光学遥感影像波段的假彩色合成信息和Landsat 8-OLI
数据的 NDVI、NDWI、SI 三种光谱指数对不同的地物进行判别，按照地物表现的轮廓和七种分类目标进行目

标选取生成以供深度学习使用的数据集（表 2）。

表 2 克里雅绿洲土地利用/覆被分类以及部分训练样本的细节

类别

景观

样本

标签

耕地 裸地 轻度盐渍 中度盐渍 重度盐渍 植被 水体

64



刘翔宇，等：基于GF-3雷达数据极化分解与深度学习的干旱区绿洲土地覆被及盐渍化分级研究

根据模型训练原则，将数据集按照 6∶2∶2 的比例划分为训练集、验证集、测试集，以达到训练模型、验证

模型并调整模型训练参数、测试模型性能并计算模型的评价指标。

本研究对 GF-3 数据集进行预处理后分为训练集、验证集、测试集，并将 U-Net 网络模型通过模型训练后

进行训练集更新，同时对训练结果进行可视化。其中本研究所使用的 IoU，Dice，Loss 和 Recall 结果曲线如图

7 所示。
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图 7 GF-3 数据 U-Net模型训练结果

图 7 表明，基于 U-Net 深度学习模型对地物进行分类结果的精度较理想，训练样本集与验证样本集的曲

线接近，训练样本的波动较小。

本研究基于 GF-3 雷达数据使用 U-Net 深度学习模型，以轻度盐渍化土壤、中度盐渍化土壤、重度盐渍化

土壤，水体、植被、裸地、耕地这七种地物分类为标准，对克里雅绿洲土地利用/覆被情况进行分类（图 8）。

由图 8 可知，克里雅绿洲区的土壤盐渍化情况较明显，土壤盐渍化分布集中在绿洲外围，绿洲内部的土

壤盐渍化较少，研究区盐渍化土壤主要分布在克里雅绿洲西北部和东部以及中部植被-耕地交错带。其中，

研究区北部出现片状中度盐渍化、轻度盐渍地交错区域和面积较大的重度盐渍地，绿洲内部出现与耕地交

错出现的带状轻度盐渍地。北部总体盐渍化程度高于南部，呈现出由绿洲内部植被与轻度盐渍化交错分布

到中度与重度盐渍化交错的过渡趋势。总体地物情况自北向南的趋势为裸地-重度盐渍化-中度盐渍化-轻

度盐渍化与植被、耕地、水体交错区-重度盐渍化-裸地，与野外实测调查结果相同。

从数据集通过 U-Net 深度学习模型的精度验证结果可以看出，由于 U-Net 模型单纯利用上采样的方法

还原输入特征图像的大小，忽略了空间一致性，导致结果边缘模糊和部分空间信息丢失。表 3 展示出训练模

型的验证集上分类最终结果的精度评价结果，其中召回率（Recall）的评价精度结果较差，为 0.614；而损失函
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数（Dice）的精度情况较好，为 0.711. 表 4 展示出 GF-3 深度学习地统计学精度验证结果，其中 Kappa 系数为

0.7253. 总体精度（Overall Accuracy）为 78.2184%.
表 3 GF-3 深度学习精度验证结果

Model
U-Net

GF-3
mDice
0.711

mIoU
0.659

mRecall
0.614

Total params
14，791，558

表 4 GF-3 深度学习地统计学精度验证结果

Model
U-Net

GF-3
Kappa 系数

0.7253
Overall Accuracy（%）

78.2184
3.3.2 传统分类算法精度结果

本研究使用 ENVI 5.3 软件中机器学习监督分类算法插件，基于监督分类的理论原理对 GF-3 雷达数据

进行目视解译，建立七种 ROI（Regions of Interest，ROI）分类：轻度盐渍化土壤、中度盐渍化土壤、重度盐渍化

土壤、水体、植被、裸地、耕地。为保证达到分类结果的精度要求，选取包含像元信息较为单一、统一的区域

作为样本，且均匀分布于 GF-3 雷达影像中。经过计算结果如图 9 所示。

结合三种分类结果可以看出，研究区的地区分布情况为北部主要为盐渍化土壤，重度盐渍化与裸地成

片状交错；轻度盐渍化地围绕在绿洲外侧，同时与耕地成条状交错；植被横向穿过绿洲中部，表现较为集中，

部分植被围绕在水体附近；南部裸地分布面积较大，与重度盐渍化相互交错。分类结果与野外实测情况

相近。

借助 ENVI 5.3 软件中利用混淆矩阵方法计算最大似然分类、随机森林和支持向量机三种监督分类结果

的精度评价指数（表 5）。
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图 9 传统图像分类结果图

表 5 监督分类精度评价

Kappa 系数

Overall Accuracy（%）

最大似然分类

0.5940
69.4428

随机森林

0.6801
74.5328

支持向量机

0.6234
70.6728

根据 Kappa 系数和总体分类精度评价结果可知，随机森林的分类效果最优，随机森林算法对七种地物的
分类效果较明显，可以较好地将植被、耕地和轻度盐渍化三种地物进行分类。随机森林算法的优点是在计
算中加入了随机性，可以保证结果不受过拟合的影响，所以与最大似然分类、支持向量机两种算法相比，可
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在制作深度学习数据集时提供更优、更可信的分类参考。

3.4 深度学习分类精度结果与传统分类算法精度结果对比分析

在样本数量较少的情况下，传统图像分类方法具有简单高效的优势。相比之下，深度学习模型在处理

大量样本时展现出更高的识别准确度和更强的稳健性。在传统监督学习领域，MLC 能够快速做出预测，但

其分类精度有限；SVM 虽然分类能力强，但精度不及 RF；而 RF 因其对样本精度的高要求，通常能提供更优的

分类结果。卷积神经网络是一种基于深度神经网络的影像特征抽取方法，但其训练过程复杂，且在小型样

本上，基于经典机器学习的分类方法具有更大的优越性。在海量数据和辨识准确率方面，深度学习模型表

现更佳［34］，精度评价结果如表 6 所示。

表 6 深度学习分类及监督分类精度评价结果比较

Kappa 系数

Overall Accuracy（%）

U-Net 模型

0.7253
78.2184

最大似然分类

0.5940
69.4428

随机森林

0.6801
74.5328

支持向量机

0.6234
70.6728

在比较相同的图像特征和不同的分类算法时，需要使用相同的精度评价指标。不同算法的分类准确性

差别明显，其中 U-Net 深度学习模型与 MLC 的分类精度相差 8.7756%，与 RF 的分类精度相差 3.6856%，与

SVM 的分类精度相差 7.5456%. 但传统图像分类算法和深度学习算法所得到的分类精度均稳定在 65% 以上，

说明本研究所使用的数据集地物分类的准确性较好。在经典影像分类方法中，对于同一影像特征、同一样

本输入，采用不同的方法，其准确率差别很小。但是，与深度神经网络分类器识别结果的准确率比较，其识

别效果的准确率有较大的差距。

深度学习广泛应用于多种遥感影像的识别、分类研究［38］，本研究使用传统图像分类算法和深度学习算

法，并进行对比分析。通过分类精度结果对比可知：U-Net 深度学习模型是一种更准确、更有效的分类方法，

可以更好地监测克里雅绿洲土地利用/覆被情况。

4 结论

本研究基于 GF-3 全极化合成孔径雷达数据，结合 U-Net 卷积神经网络模型，以 Landsat 8-OLI 光学数据

的光谱信息为地物分类参考基准，对克里雅绿洲开展土地利用/覆被分类研究，获得以下结论。

（1）NDVI、NDWI 与 SI 的协同应用显著提升了分类模型的判别能力。NDVI 通过表征植被光合活性，有

效区分植被覆盖区与非植被区；NDWI 则通过冠层水分敏感性，精准提取水体及湿地信息；而 SI 通过盐分反

射特性差异，量化盐渍化土壤的空间分异。三者联合构建的多维特征空间解决了植被-盐渍化混合像元的

同谱异质问题。例如，轻度盐渍化土壤因植被覆盖导致 NDVI 值偏高，但 SI 值同步升高可有效区分其与自然

植被的差异；重度盐渍化土壤因地表裸露呈低 NDVI、高 SI 的特征组合，与裸地（低 NDVI、低 SI）形成显著光

谱分离。盐渍化土壤的精细分级（轻度、中度、重度）揭示了绿洲土地退化的空间异质性特征，为绿洲盐渍化

风险预警提供量化依据。

（2）在传统图像分类方法对比方面，通过最大似然法、支持向量机和随机森林三种算法对 GF-3 雷达数

据的最优特征组合进行土地利用分类实验。在统一数据源及相同训练样本条件下，随机森林分类器的总体

精度分别较最大似然分类和支持向量机提升 5.09% 和 3.86%，其 Kappa 系数达到 0.6801. 实验结果表明，基于

极化分解特征构建的随机森林分类模型能更精确地识别地表覆盖细节特征，有效验证极化分解特征在地物

分类中的适用性和分类效能。

（3）在深度学习模型应用方面，基于最优极化特征构建的雷达数据集，采用 U-Net 模型进行地物分类提

取。与传统方法中表现最优的随机森林分类结果相比，U-Net 模型的 Kappa 系数提升 0.7253，总体精度提升

78.21%. 定量评价指标结合目视解译分析表明，深度学习模型在特征表征能力和空间细节保持方面具有显

著优势，验证了融合极化特征与深度学习技术的分类方法在复杂地表覆盖解析中的有效性。尽管 U-Net 模

型训练耗时远高于传统算法，但其端到端特征学习机制避免了人工特征工程的复杂性，在应对大规模数据

时更具计算成本效益［26］。
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Land Cover Classification and Salinization Level Assessment of Oases in Arid
Regions based on Polarimetric Decomposition of GF-3 SAR Data and Deep Learning

LIU Xiang-yu1，ZHANG Fei2*，ILYAS·Nurmemet1

（1. College of Geography and Remote Sensing Sciences，Xinjiang University，Urumqi，Xinjiang，830017，China；

2. College of Geography and Environmental Sciences，Zhejiang Normal University，Jinhua，Zhejiang，321004，China）

Abstract：Land use/land cover (LUCC) change is a key scientific issue for understanding human-land 
interactions, and its accurate monitoring provides essential support for regional sustainable development decision-
making. This study takes the Keriya Oasis as the study area and constructs a multi-source remote sensing 
collaborative classification framework by integrating GaoFen-3 (GF-3) fully polarimetric synthetic aperture radar 
(SAR) data, Landsat 8 OLI multispectral imagery, and in situ measurements of soil physicochemical properties. Soil 
salinization levels (slight, moderate, and severe) are employed as the core quantitative indicator of land cover quality 
and, together with land use types (cropland, vegetation, water bodies, and bare land), form the classification scheme.
By applying eight polarimetric decomposition methods, a random forest-based feature selection algorithm, and a 
U-Net deep learning model, this study systematically explores optimal interpretation strategies for land use/land 
cover classification in arid oasis environments. The experimental results demonstrate that, compared with traditional 
image classification algorithms, the U-Net deep learning framework exhibits a significant advantage in classification 
accuracy, achieving an overall accuracy of 78.21% and a Kappa coefficient of 0.72. The model effectively integrates 
radar backscattering features, optical spectral information, and soil physicochemical parameters such as soil organic 
matter content. By constructing a multidimensional feature space, it successfully addresses the problem of spectral 
heterogeneity within vegetation-salinization mixed pixels. The proposed multi-source data fusion-based 
classification approach provides a novel technical pathway for oasis ecosystem monitoring. Moreover, the spatial 
heterogeneity captured by the classification results offers a robust scientific basis for land degradation control and 
resource management decision-making in oasis regions.

Keywords：Convolutional neural network；GF-3；Polarization decomposition；Keriya Oasis；Land use/cover
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