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摘　要：为适应不同形态特征的樱桃图像并有效获取樱桃图像边缘，本研究利用特征信息较灰度信息更普适的特点，提出一种结合纹

理信息的 SUSAN 边缘检测算法。首先，对图像进行二值化后，提取图像的纹理特征信息；其次，使用 SUSAN 算子在特征图中进行遍历，检测并

提取对象边缘；最后，通过仿真实验进行对比分析改进前后算法的性能。结果表明，改进的边缘检测方法在保持好樱桃图像细节信息的同时，

能有效检测图像边缘，且鲁棒性强，文章所提算法的检测性能优于其他方法。
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随着计算机视觉在农业中的普及，其在水果种植和管理方面具有越来越重要的意义。图像识别技术可

以实现自动化水果分类、成熟度检测、病害虫识别等任务。但计算机视觉仍面临一些不足和挑战，当前农业

生产中的水果采摘分拣方式以传统的人工方式为主，环境因素对视觉识别的影响较大，如光照、气候、果实

的遮挡，都可能导致识别精度降低，影响水果产业链的发展与质量的提升［1］ 。对于复杂环境下的水果图像，

Rabby 等人［2］采用 Canny 边缘检测算法进行图像处理，对水果进行识别和分类，但在自然环境下效率及准确

率较低，实用性较差；Xu 等人［3］根据杨梅果实的特点，在 RGB 模式下利用 SUSAN 算子不需要梯度计算的特

点，自适应选取阈值进行边缘检测，然后通过 Hough 来实现杨梅果实的识别，但由于拍摄条件无法统一，仍

需手动调节参数值，若存在遮挡等情况，检测准确率将进一步下降；Versaci 等人［4］提出了一种基于模糊发散

和模糊熵最小化的新型边缘检测算法，可以有效解决模糊图像中的边缘检测问题，但当图像存在锯齿状边

缘时，该方法无法对边缘像素信息进行量化，将导致检测准确率下降；Han 等人［5］提出了一种基于 Sobel 算子

的改进边缘检测算法，可以有效解决传统 Sobel 边缘检测算法中图像边缘定位精度低、边缘提取粗糙的问

题，但仍存在部分边缘点缺失的情况，而且采用全局阈值用于识别边缘点的方法虽然简单、通用，但针对性

较低；Jiao 等人［6］提出了一种基于局部最大值的重叠圆定位方法，用于水果定位和边缘描绘，但当果实边缘

被枝叶遮挡时，苹果阴影区域会出现多个错误局部最大值，导致定位偏移，无法实现准确检测。因此，文章

提出一种结合纹理特征信息的最小核值相似区水果边缘检测算法，用于检测复杂信息条件下樱桃图像的

边缘。

1 SUSAN 算法

Smith 等人发现边缘检测算子大多通过图像的梯度得到边缘像素点集，这种方法较为复杂，故提出一种

最小核值相似区（Smallest Univalue Segment Assimilating Nucleus，SUSAN）算法［7-8］，即通过圆形掩模遍历整个

图像，在图像中的每个点放置一个圆形掩模，对于每个像素点，将掩模内非核的灰度值与掩膜核（中心点）的

灰度值进行比较。将圆形掩模内满足掩模核与非核之间的灰度差小于给定阈值的所有像素点统称为核同
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质区（Univalue Segment Assimilating Nuclues，USAN），USAN 面积公式如下

n ( r0 ) =∑
r

e
- ( )I ( )r -I ( )r0

t

6

（1）

其中，I ( )r 为 r 处的灰度，n ( r0 )是 r0 处的 USAN 值，t 是用于区分目标和背景的相似性阈值。

用 USAN 区域面积来确定边缘点，其关系如图 1 所示。图 1 中，a+表示掩膜处于目标区域之外，USAN 区

域的面积最大；+b 表示进入目标区域边缘后，USAN 区域会再次增大；c+表示模板的中心位于目标区域边缘

时，USAN 缩小至一半；d+表示模板向目标区域移动时，USAN 区域最终恢复最大；e+、h+表示当模板中心位于

角点时，USAN 区域的面积最小［9］ 。

USAN 面积阈值设为 g. 掩膜通常取半径 3 或 4 像素的圆形模板，当该值小于等于 g 时，则为边缘点；大于

g 时，则该点位于图像内部，即

U ( )r0 = ì
í
î

g - n ( )r0 ,  n ( )r0 ≤ g

0,             otherwise
（2）

h+h+

c+c+ e+e+

a+a+

d+d+

+b+b

图 1 掩膜在不同区域时 USAN 面积

2 算法

2.1 算法原理

SUSAN 算法具有检测精度高、对局部噪声的抗干扰能力强和计算速度快等优点。该算法主要依赖两个

关键参数，即相似性阈值 t 和面积阈值 g［10］ . 相似性阈值直接影响边缘点的数量和检测精度。在传统 SUSAN
算法中，相似性阈值通常是通过实验设定的固定值。在实际应用中，最佳相似性阈值因图像不同而变化，因

此，寻找更适应的精确阈值将大大提高算法的检测效果。

相似性阈值的本质是比较掩膜核与非核之间的灰度差，但图像的灰度信息在不同光照条件下变化显

著，而纹理特征信息则更关注像素之间的相对关系，因此对光照更具鲁棒性。此外，对于微小的、局部的边

缘变化，纹理特征信息能够捕捉到更多细节。所以纹理特征信息较灰度信息更能准确反映目标与背景之间

的差异。相似度阈值局部二元模式（Local Binary Pattern，LBP）［11-12］具有纹理描述能力、旋转不变性以及丰富

的统计特征表达。这使得 LBP 在需要高效、实时处理的场景中，如水果图像，在纹理特征检测方面表现优

秀。用纹理特征代替灰度信息后，同样需要设定阈值来判断像素点之间是否相似，LBP 算子通过等长二进制

序列来描述像素点及其邻域的局部纹理特征信息，故可利用 Hamming 距离［13］衡量不同二进制序列的相似程

度，通过比较 LBP 序列每位数字的异同，来判断纹理特征的相似性。

文章改进的算法利用 LBP 算子提取图像的纹理特征信息来代替图像的灰度信息，给像素点赋予二进制

LBP 编码并采用可量化的 Hamming 距离代替经验的灰度相似性阈值，通过这两处变化来解决 SUSAN 算法中
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通过经验来确定相似性阈值这一问题，提高算法的准确性和鲁棒性。

2.2 LBP 算子提取纹理特征过程

LBP 算子计算首先需定义一个 3×3 的窗口，通过将窗口中心点与周围像素进行灰度值比较，如果邻域像

素的灰度大于或等于中心点像素，则标记为 1，反之则标记为 0. 然后按照顺时针方向将这些值排列为二进制

数，再将二进制数转换为十进制数，得到该窗口的 LBP 编码值［14］ （图 2）。
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图 2 LBP 算法流程

LBP 编码值如式（3）所示

LBP ( )x0,y0 =∑
p=0

P-1
s ( )L ( )xp,yp - L ( )x0,y0 ·2p （3）

s ( )x = ì
í
î

1,   if  x ≥ 0
0,   if  x ≤ 0 （4）

其中，L ( )x0,y0 为需计算 LBP 编码的中心像素，L ( )xp,yp 为围绕中心像素的邻域像素；P 表示 8 邻域中第 P 个像

素点；s ( )x 为二进制转换函数；2p 是将每个位置上的二进制值乘以相应的位置权重，形成一个二进制数，最终

得到这点的 LBP 编码。

2.3 结合纹理特征的 SUSAN 边缘检测算法

将得到的 LBP 编码代替式（1）中的 I ( )r 与 I ( )r0 ，利用 Hamming 距离来判别纹理特征信息之间的相似性，

然后计算像素点的 USAN 区域面积，最后得到目标的边缘。设 r0 为 LBP 窗口中心像素点，r 为其邻域内其他

像素点，在得到 LBP ( )r 、 LBP ( )r0 后通过式（5）求得 USAN 区域面积

n ( r0 ) =∑
r

e
-( )LBP ( )r -LBP ( )r0

t

6

（5）

此时，式中变量 t 不再是灰度相似性阈值，而是依据下式计算得出的 Hamming 距离［15-17］进行判断的二进制相

似阈值

d ( )LBP ( )r ,LBP ( )r0 =∑
i=1

n

δ ( )LBP ( )r [ ]i ,LBP ( )r0 [ ]i （6）
其中，n 为字符串长度，LBP ( )r [ ]i 和 LBP ( )r0 [ ]i 分别表示 LBP 编码第 i 个字符，函数 δ 定义为

δ ( )S1[ ]i ,S2[ ]i = ì
í
î

ïï

ïï

1 ,   if  LBP ( )r0 [ ]i = LBP ( )r [ ]i

0 ,   if  LBP ( )r0 [ ]i ≠ LBP ( )r [ ]i
（7）

由于 LBP 编码为 8 位二进制序列，故利用 Hamming 距离比较两个 LBP 编码值的相似性时，阈值最大值取

8，相较于传统方法中相似性阈值的范围，大大提高了算法的精确性。

3 仿真实验与结果分析

3.1 实验条件及参数设置

硬件环境：CPU：13th Gen Intel（R） Core（TM） i7-13650HX  2.60 GHz，机带 RAM16.0 GB 双通道；相机为

佳能 IXUS 190，CCD 传感器，尺寸为 1/2.3 英寸，有效像素 2000 万。

软件环境：Microsoft Windows 11 操作系统 opencv 库函数。本实验樱桃果实数据集均采集于甘肃省天水
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市大樱桃种植区，真值图为人工选择的边缘图像。

3.2 无噪条件边缘检测

本研究首先选用完整的单果、双果、三果、多果图像，并在无噪声条件下进行对比实验，分别采用

Roberts、Sobel、Canny、SUSAN 及本研究算法进行实验（图 3）。图 3（a）~（d）列出部分处理效果图像，其中各图

的（a）为原图，（b）~（f）为算法检测结果。
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图 3 无噪声条件下图像边缘检测效果

（注：（a1）~（a4）为果实原图，（b1）~（b4）为Roberts算法处理结果，（c1）~（c4）为Sobel算法处理结果，

（d1）~（d4）为Canny算子处理结果，（e1）~（e4）为SUSAN算法处理结果，（f1）~（f4）为文章算法处理结果）

由图 3 可知，在无噪声条件下，上述算法均可检测到目标边缘，但 Roberts 算法无法检测图像的细节部

分；Sobel 和 Canny 算法在结构简单时表现较好，当结构复杂时，果梗和叶相连处则会存在漏检。由于 SUSAN
相似性阈值与面积阈值无法进行自适应调整，因此在处理图像的不同区域时，使用固定的相似性阈值和面

积阈值可能不合适，将丢失一部分边缘细节，集中体现于果梗、叶片及果实边缘重合处。而文章方法检测出

的边缘连续且更加平滑，在细节方面表现优秀，保存图像整体轮廓的同时，还保留了大量边缘细节。

3.3 噪声条件边缘检测

为验证文章算法在不同噪声类型下的鲁棒性，在图像中分别加入 3 种常见混合噪声类型，在不同类型的

混合噪声下，文章算法与其他算法得到的边缘检测实验结果分别如图 4 所示。

由图 4 可知，各算法的性能与所加噪声的多少有关。随着噪声的增多，各个算法对边缘检测的能力有所

下降，检测结果受到严重干扰。文章算法虽然在混合噪声的影响下，纹理区出现少量噪声，但依然能清晰地

识别图像整体轮廓，较其他算法具有明显优势。
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图 4 噪声条件下图像边缘检测主观效果

（注：（a1）~（a3）分别为三种不同噪声条件下的灰度图，（b1）~（b3）为Roberts算法处理结果，（c1）~（c3）为Sobel算法处理结果，

（d1）~（d3）为Canny算子处理结果，（e1）~（e3）为SUSAN算法处理结果，（f1）~（f3）为文章算法处理结果）

3.4 边缘检测客观指标分析

文章选择准确率（Accuarcy）、召回率（Recall）、平均结构误差（Average Structural Error，ASE）和结构相似

度（Structural Similarity Index，SSIM）等 4 项指标评价算法性能。

（1）准确率：表示正确样本占所有样本的比例。

Accuracy = TP + TN
TP + TN + FP + FN

（8）
其中，TP（Ture Positive）表示正确检测到的边缘像素；TN（Ture Negative）表示正确识别为非边缘的像素；FP

（False Positive）表示误检为边缘的像素；FN（False Negative）表示未检测出的真实边缘像素。准确率值为［0，1］，

其中，0 表示完美匹配，1 表示最差匹配。

（2）召回率：主要衡量模型对正样本的覆盖情况，关注的是有多少真实边缘被检测出来。

Recall = TP
TP + FN

（9）
召回率值越大，说明算法在检测正样本时漏检率越低。

（3）平均结构误差：衡量检测到的边缘与真实边缘之间的结构差异。

ASE = 1
N∑

i=1

N

|| E ( )i - E0 ( )i （10）

其中，N 为图像中的总像素数，E ( )i 为算法检测到的边缘图像像素点，E0 ( )i 为图像真实边缘的像素点。边缘

检测算法的平均结构误差越小，表示检测到的边缘与真实边缘的结构差异越小，算法性能越好。通常来说，

在图像分辨率较高且边缘比较明显的情况下，ASE 值一般在 0~30 被认为结果较好。

（4）结构相似性：对比图像的亮度、结构信息和对比度来衡量两幅图像的相似度。

SSIM ( )z,y = ( )2 μz μy + c1 ( )2σzy + c2

( )μ2
z + μ2

y + c1 ( )σ2
z + σ2

y + c2
（11）

其中，μz，μy 分别为图像 Z，Y 的像素平均值；σ2
z ，σ2

y 分别为两幅图像的方差；σ zy 为协方差；c1，c2 为维持结果稳

定的常数。SSIM 值越接近 1 表示两幅图像越相似，当两幅图像完全一致时，SSIM 的值为 1.
为验证算法性能，对所选图像分别采用 Roberts、Sobel、Canny、SUSAN 及文章算法进行实验对比，所得无

噪条件下性能指标值如表 1 和表 2 所示，混合噪声条件下各性能指标如表 3 和表 4 所示。

由表 1 和表 2 中算法客观评价指标数据可知，在无噪声条件下，文章算法在 Accuracy 和 Recall 上表现优
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秀，误检率较低；通过 ASE 与 SSIM 这两项指标可知，文章算法所得目标边缘比其余方法更接近真实边缘，这

说明在无噪声条件下文章方法在准确性与边缘细节检测能力上均远远高于其余算法。

表 1 无噪声条件下的客观评价指标

图像

单果

双果

三果

多果

Accuracy
Roberts
0.996
0.984
0.974
0.952

Sobel
0.992
0.985
0.978
0.940

Canny
0.991
0.990
0.982
0.981

SUSAN
0.982
0.985
0.982
0.974

文章方法

0.997
0.992
0.996
0.992

Recall
Roberts
0.021
0.002
0.040
0.329

Sobel
0.377
0.040
0.051
0.041

Canny
0.410
0.433
0.536
0.357

SUSAN
0.685
0.644
0.503
0.619

文章方法

0.929
0.964
0.970
0.977

表 2 无噪声条件下的客观评价指标

图像

单果

双果

三果

多果

ASE
Roberts
1.278
4.175
6.638
3.805

Sobel
1.924
4.069
5.635
3.104

Canny
1.243
7.064
6.240
2.808

SUSAN
1.946
4.462
7.953
2.746

文章方法

1.103
1.680
2.153
1.235

SSIM
Roberts
0.881
0.309
0.688
0.389

Sobel
0.743
0.249
0.363
0.343

Canny
0.960
0.808
0.754
0.640

SUSAN
0.944
0.760
0.749
0.791

文章方法

0.990
0.962
0.959
0.976

根据表 3 和表 4 中不同噪声条件下算法客观评价指标数据可知，当噪声条件复杂时，文章算法的准确率

和召回率远高于其他算法，能够在密集的噪声点中准确检测出目标边缘。

表 3 噪声条件下的 Accuracy 和 Recall

图像

单果

双果

三果

多果

噪声

20
25
50
20
25
50
20
25
50
20
25
50

Accuracy
Roberts
0.872
0.778
0.577
0.768
0.768
0.467
0.870
0.769
0.669
0.886
0.785
0.584

Sobel
0.897
0.847
0.543
0.841
0.807
0.474
0.856
0.831
0.510
0.857
0.839
0.541

Canny
0.892
0.821
0.476
0.858
0.793
0.562
0.868
0.799
0.565
0.871
0.847
0.683

SUSAN
0.908
0.848
0.713
0.888
0.833
0.726
0.885
0.838
0.709
0.902
0.853
0.723

文章方法

0.973
0.968
0.964
0.960
0.956
0.949
0.966
0.964
0.947
0.978
0.972
0.947

Recall
Roberts
0.103
0.137
0.319
0.135
0.232
0.436
0.144
0.142
0.398
0.176
0.283
0.326

Sobel
0.162
0.225
0.376
0.128
0.183
0.377
0.157
0.203
0.419
0.205
0.234
0.378

Canny
0.276
0.332
0.368
0.222
0.281
0.340
0.304
0.335
0.372
0.229
0.264
0.320

SUSAN
0.855
0.716
0.671
0.865
0.629
0.482
0.900
0.616
0.515
0.830
0.688
0.520

文章方法

0.934
0.929
0.902
0.921
0.917
0.880
0.933
0.922
0.880
0.930
0.906
0.864

ASE 与 SSIM 代表检测出的边缘与真实边缘之间的差异性。由表 4 可知，在复杂噪声条件下，算法仍具

有优秀的边缘检测能力，其抗噪和细节保留能力均强于其余算子。

表 4 噪声条件下的 ASE 和 SSIM

单果

20
25
50

26.470
27.510
36.550

28.780
31.420
32.900

26.930
43.690
78.690

11.650
19.770
26.910

4.960
4.960
4.550

0.490
0.290
0.090

0.300
0.240
0.140

0.530
0.240
0.060

0.610
0.410
0.350

0.930
0.860
0.770

图像 噪声
ASE

Roberts Sobel Canny SUSAN 文章方法

SSIM
Roberts Sobel Canny SUSAN 文章方法
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双果

三果

多果

20
25
50
20
25
50
20
25
50

35.900
40.930
58.960
31.380
47.460
66.430
29.190
37.050
54.280

24.570
40.060
50.150
27.170
45.480
50.930
30.470
33.650
43.490

35.270
50.320
81.340
31.680
47.990
80.590
22.140
37.290
76.050

12.740
18.890
23.730
14.550
14.260
27.650
12.720
16.500
30.600

6.040
6.030

10.240
8.780
8.660
9.490
5.090
5.290
6.660

0.470
0.290
0.190
0.530
0.360
0.210
0.400
0.220
0.100

0.380
0.240
0.100
0.290
0.230
0.140
0.060
0.050
0.030

0.430
0.180
0.030
0.430
0.170
0.050
0.600
0.250
0.020

0.620
0.410
0.310
0.730
0.520
0.310
0.610
0.400
0.300

0.920
0.860
0.740
0.920
0.800
0.690
0.910
0.870
0.700

续表

图像 噪声
ASE

Roberts Sobel Canny SUSAN 文章方法

SSIM
Roberts Sobel Canny SUSAN 文章方法

4 结语

文章通过深入研究传统 SUSAN 边缘检测算法的局限性，提出一种改进的算法，旨在优化相似性阈值的

设定。该算法基于纹理特征对像素点进行二进制编码，进而利用其相似性更易灵活确定相似性阈值。相较

于传统算法中固定的相似性阈值，该方法通过纹理特征编码所产生的相似性阈值能够更灵活地适应图像的

局部特征，从而提高边缘检测的准确性。

具体而言，改进的算法首先通过纹理特征编码精确提取图像的几何特性，并利用此信息计算相应的相

似性阈值。之后，通过 USAN 区域有效分离出边缘点集，在此基础上，对边缘点集中的像素点进行 SUSAN 边

缘初始响应计算，最终获得更为精确的边缘检测结果。该算法充分利用了纹理特征的局部一致性，提高了

对复杂边缘结构的检测能力，使得检测效果更加可靠和稳定。

实验结果表明，文章提出的改进 SUSAN 算法在实际应用中表现出色，特别在处理复杂背景和细节丰富

的图像时，能有效克服传统 SUSAN 算法在边缘检测中的不足。相较于其他现有的边缘检测算法，文章算法

展现了更强的实用性和鲁棒性，在樱桃图像的边缘检测实验中，取得了显著的效果，验证了其在实际应用中

的优越性。

综上所述，文章提出的改进 SUSAN 算法通过对纹理特征编码及其相似性阈值进行优化设计，不仅提高

了边缘检测的精度，还增强了其在复杂图像场景中的适应性，与同类算法相比，其实用性和鲁棒性更强，具

有重要的应用价值。
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SUSAN Image Edge Detection based on Texture Features
LIU Qing，HE Bing-wei，WU Zhong-xiao，QI Kai，MA Xiao-shu，WEI Kai-bin

（School of Electronic Information & Electrical Engineering，Tianshui Normal University，

Tianshui，Gansu，741001，China）

Abstract：To adapt to cherry images with different morphological characteristics and effectively capture the 

edges of cherry images，in this paper，a modified SUSAN edge detection algorithm combining texture information is 

proposed，leveraging the characteristic that texture information is more universal than grayscale information. Firstly，

after binarizing the image，the texture features are extracted. Next，the SUSAN operator is applied to traverse the 

feature map to detect and extract the object edges. Finally，comparative analysis is conducted through simulation 

experiments to evaluate the performance of the algorithm before and after improvement. The results show that the 

improved edge detection method effectively captures the edges of the cherry images while preserving fine details，

demonstrating strong robustness. The proposed algorithm outperforms other methods in terms of detection 

performance.

Keywords：Cherry images；SUSAN algorithm；Texture features；Edge detection
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