第44卷 第2期 2025年6月 Vol. 44, No. 2 Jun. 2025

BaSi₂O₂N₂:Eu²⁺,Mn²⁺荧光粉的制备及对Eu²⁺ 晶体学格位的讨论

王江涛¹,李媛媛¹,曹 智¹,李郎楷²,马保亮¹,王浩浩^{1*} (1.南京农业大学理学院,江苏南京 210095;2.广东科煜光电有限公司研发部,广东肇庆 526500)

摘 要:文章采用两步固相法制备了BaSi₂O₂N₂:Eu²⁺, Mn²⁺荧光粉, 利用荧光光谱仪(PL)、扫描隧道显微镜(SEM)和X射线衍射仪(XRD)对所制备样品的荧光性能、颗粒表面形貌和晶体结构进行研究。其光谱呈现Eu²⁺的d-f跃迁的宽谱带特性, 发射光谱峰值为490 nm, 激发光谱覆盖了370~470 nm, 与蓝光和近紫外光LED芯片的激发波长相匹配。Mn²⁺的掺杂并未改变BaSi₂O₂N₂:Eu²⁺的发光谱形和晶体结构,但是增强了Eu²⁺的发光强度, 当Mn²⁺的掺杂浓度为0.02 mol时, 其发光强度提高了46%; 所制备荧光粉表面形貌呈无规则状。通过UITERT经验公式讨论了Eu²⁺在BaSi₂O₂N₂:Eu²⁺中的晶体学格位, 所计算的理论值489 nm 与实验观测值490 nm 相近。

关键词:氮(氧)化物;稀土掺杂;固相反应法;晶体学格位

中图分类号:0741.3 文献标识码:A 文章编号:1008-9659(2025)02-0045-05

以氮(氧)化物为晶格的稀土掺杂荧光粉由于其优异的发光性能,对环境无污染以及良好的化学稳定性 和热稳定性,受到了广泛关注。同时,由于氮(氧)化物荧光粉的光学特性非常适用于蓝光或近紫外光激发 的白光LED照明领域,世界上许多国家和地区先后制定了发展新型高效氮(氧)化物荧光粉的措施和对策, 以推动其固体白光LED的发展,并力求在此方面取得全球领先地位^[1]。

 $MSi_2N_2O_2(M = Ba, Sr, Ca)$ 体系荧光粉的结构中包含 SiON₃四面体组成的(Si_2N_2O_2)₂层状结构,M离子 与 6 个氧原子相连接,分布在(Si_2N_2O_2)₂层状结构之间。近年来,MSi_2N_2O_2作为稀土荧光粉的掺杂基质得到广 泛研究,并逐渐应用于白光LED 领域^[2-10],如发蓝绿光的 BaSi_2O_2N_2;Eu^{2+[2-7]}、黄绿光的 SrSi_2O_2N_2;Eu^{2+[7-9]}和黄光 的 CaSi_2O_2N_2; Eu^{2+[10]}. 其中 BaSi_2N_2O_2属于正交晶系,Pbcn 空间群^[2],Eu²⁺激活的 BaSi_2O_2N_2;Eu²⁺荧光粉,与 $MSi_2O_2N_2$;Eu^{2+(M} = Sr,Ca)相比,具有非常小的斯托克斯位移以及半高宽很小的发射光谱,这种独特的性能 使其受到特殊关注^[2,4,6]。众所周知,通过与Eu²⁺共掺杂离子往往可以使荧光粉获得更优异的发光特性,如 Markus 等人^[4]通过掺杂 Sr 取代 Ba 制得了目前蓝光发光材料中半高宽最小的 Sr_{0.25}Ba_{0.75}Si₂O₂N₂;Eu²⁺荧光粉; 王灵利等人^[6]对BaSi₂O₂N₂:Eu²⁺进行了封装性能的报道。但到目前为止,关于Mn²⁺/Eu²⁺共掺杂的BaSi₂O₂N₂:Eu²⁺,Mn²⁺ 荧光粉还未见报道。

本研究采用两步高温固相法制备了 BaSi₂O₂N₂: Eu²⁺, xMn²⁺(x = 0, 0.01, 0.02, 0.03, 0.04)荧光粉, 探讨了 Mn²⁺对 Eu²⁺发光性能的增强作用。同时, 通过 UITERT^[11]公式讨论了 Eu²⁺在 BaSi₂O₂N₂中的晶体学格位,并计 算了 Eu²⁺在 BaSi₂O₂N₂: Eu²⁺中的发射波长, 所计算的理论值 489 nm 与实验观测值 490 nm 相一致。

[[]收稿日期]2024-05-07

[[]修回日期]2024-05-28

[[]基金项目]国家自然科学基金青年项目(ZX2200468);中央高校基本业务费(KYQN2023016);江苏省自然科学基金青年项目(BK20200550)。

[[]作者简介]王江涛(2004-),男,主要从事应用化学、无机化学方面研究,E-mail:18058585003@163.com.

^{*[}通讯作者]王浩浩(1989-),男,副教授,主要从事稀土发光材料的制备及应用方面研究,E-mail:wanghhtit@njau.edu.cn.

1 实验

所用原料为BaCO₃(AR)、SiO₂(99.99)、Si₃N₄(99.9%)、Eu₂O₃(99.99)和MnCO₃(AR)。第一步,按照化学计量比称取BaCO₃、SiO₂、Eu₂O₃和MnCO₃,混合均匀后放到管式炉中,在5%H₂-95%N₂还原气氛下于1100℃热处理2h,得到Ba₂SiO₄:Eu²⁺,Mn²⁺;第二步,将Ba₂SiO₄:Eu²⁺,Mn²⁺和Si₃N₄按照1:1的摩尔比称取,混合均匀后再次放到管式炉中,在5%H₂-95%N₂还原气氛下于1480℃热处理6h,即得到BaSi₂O₂N₂:Eu²⁺,Mn²⁺荧光粉。基质的化学反应式如下

$$2BaCO_3 + SiO_2 \rightarrow Ba_2SiO_4 + 2CO_2$$

$$Ba_2SiO_4 + Si_3N_4 \rightarrow 2BaSi_2O_2N_2$$

其中,Eu2+和Mn2+作为取代Ba2+的掺杂离子,Eu2+浓度固定为0.02 md,Mn2+浓度为0~0.04 mol.

采用飞利浦 X'Pert PRO 型号的 X 射线衍射仪对所制备的样品进行晶体结构分析。采用日立 TM-3000 型号的扫描电镜对样品进行颗粒尺寸及表面形貌分析。采用日立 F-7000 型号的荧光光谱仪测试样品的激发和发射光谱。

2 结果与讨论

2.1 样品的晶体结构和 SEM 分析

图1显示的是掺杂不同 Mn²⁺浓度的 BaSi₂O₂N₂; Eu²⁺, *x*Mn²⁺(*x*=0,0.01,0.02,0.03,0.04)的 XRD 结果。由图1 可知,掺杂少量 Mn²⁺对 XRD 图谱几乎没有影响。经对比,所制备样品的晶体结构与文献[2]报道的基本一致,所有衍射峰角度均与 ICSD-419450 卡片衍射峰相匹配,说明制备的样品是 BaSi₂O₂N₂为基质的晶体。BaSi₂O₂N₂属于正交晶系,空间群为 Pbcn,晶胞参数为 a=1.4390 nm, b=0.5343 nm, c=0.4833 nm. 在 BaSi₂O₂N₂晶体结构中,Ba只有一种配位环境,即8个O原子包围 Ba原子四周形成长方体,2个N原子分别在上下面两侧,如图 2(a)所示,并且8个 Ba-O 的键长分别为0.273 nm(2×)、0.282 nm(2×)、0.291 nm(2×)和0.309 nm(2×); 2个 Ba-N 的键长为0.334 nm(2×),明显长于 Ba-O. 图 2(b)是O原子的配位环境,其周围有5个最邻近原子,即1个Si原子,4个 Ba原子。

图2 Ba(a)和O(b)离子在BaSi₂O₂N₂中的配位环境

图 3 是 BaSi₂O₂N₂: Eu²⁺(a)和 BaSi₂O₂N₂: Eu²⁺, Mn²⁺(b)荧光粉的 SEM 结果。由图 3 可知, 颗粒表面光滑, 说明结晶较完整; 颗粒形状呈不规则状, 粒度主要分布在 3~15 μm. Mn²⁺的掺杂并未改变颗粒的形貌、尺寸。

图 3 BaSi₂O₂N₂:Eu²⁺(a)和BaSi₂O₂N₂:Eu²⁺,Mn²⁺(b)的SEM结果

2.2 样品的发光性能分析

图4是BaSi₂O₂N₂:Eu²⁺, *x*Mn²⁺的激发和发射光谱结果,其中图4(a)是492 nm 监测下的激发光谱,图4(b) 和图4(c)分别是379 nm 和450 nm 激发下的发射光谱。结果显示:单掺Eu²⁺的BaSi₂O₂N₂:Eu²⁺荧光粉,激发光 谱由250~350 nm 和350~475 nm 两个宽谱带组成,归属于Eu²⁺的4f⁰→4f⁶5d¹跃迁,尤其是370~470 nm 有较强 的吸收,与目前市场上的蓝光和近紫外光LED芯片相匹配;BaSi₂O₂N₂:Eu²⁺在379 nm 和450 nm 激发下,均发 射490 nm 的蓝绿光,归属于Eu²⁺的4f⁶5d¹→4f⁰(d-f)跃迁。BaSi₂O₂N₂:Eu²⁺的斯托克斯位移为1900 cm⁻¹以及半 高宽 FWHM=30 nm,如此小的斯托克斯位移以及 FWHM,在同类荧光粉中是非常少见的,尤其是小的 FWHM,在白光LED中应用时,有助于提高其显色指数^[4]。因此,研究进一步提高BaSi₂O₂N₂:Eu²⁺荧光粉的发 光效率具有重要的研究及应用意义。

文章首次探讨了 Mn²⁺掺杂对 BaSi₂O₂N₂: Eu²⁺光学性能的影响。由图4(b)、图4(c)可知, Mn²⁺的掺杂并 没有改变 Eu²⁺的光谱形状,包括发光范围、峰值和半高宽,但明显提高了 Eu²⁺的发光强度。如当 Mn²⁺浓度 x=0.02时, Eu²⁺在490 nm的发光强度提高46%, 说明Mn²⁺对Eu²⁺具有敏化作用。该敏化现象在SrSi₂O₂N₂: Eu²⁺, Mn²⁺体系中也有类似的发现^[8-9], 但敏化原理尚不清楚, 需要进一步研究。

2.3 Eu²⁺的晶体学格位讨论

为了研究 Eu²⁺在 BaSi₂O₂N₂: Eu²⁺中晶体学格位,通过采用 UITERT 经验公式首次计算 Eu²⁺进入 BaSi₂O₂N₂ 晶体的发射波长,公式如下^[11]

$$E = Q \left[1 - (V/4)^{1/V} 10^{-\phi} \right] \mathrm{cm}^{-1} \tag{1}$$

其中, $\Phi = (n Ea r)/8; E 为 5d 激发态低能带边位置(cm⁻¹); Q 为自由离子的低 d 带边的能量位置,对于 Eu²⁺为 34000 cm⁻¹; V 是激活剂离子的化合价,对于 Eu²⁺而言 V=2; n 为基质中阳离子配位数; r 是被激活剂金属阳离子 取代的离子半径,对于 BaSi₂O₂N₂基质,只存在 10 配位(8+2)的 Ba 原子,r 值为 0.156 nm; Ea 为阴离子的电子亲 和能。UITERT 在文献[11]中讨论了 n 和 Ea 的取值。如图 2(a) Ba 在 BaSi₂O₂N₂中的配位环境,由于 Ba 格位的 2 个 Ba-N 的键长(0.334 nm)明显大于 Ba-O 的键长(0.273~0.309 nm),因此可以认为 Ba 的晶体场主要受 8 个 O 原子作用;对于 4 配位的 O 离子, Ea=1.17 eV,而在 BaSi₂O₂N₂中,O 离子为 5 配位。因此,此处 Ea 可近似为 1.17/0.73=1.6 eV.将以上值代入式(1),可得结果(表1)。$

表1 Eu²⁺发射波长的计算值(λ_{a})和测试值(λ_{b})以及阳离子配位数(n)、半径(r)

阳离子	n	r/nm	$\lambda_{ m c}/{ m nm}$	λ_t/nm
Ва	10	0.166	438	/
	8	0.156	489	490

由表1可以看出,经过假设后,当配位数n取10,即把N原子也作为配位原子,光谱发射波长的计算值 λ_c 为438 nm,当n取8,即仅将O原子作为配位原子, λ_c 为489 nm,与测试值 λ_i (490 nm)相一致。因此,可以认为由于N原子距离发光中心的Eu²⁺较远,几乎对Eu²⁺不存在晶体场作用,主要由周围的8个O原子作用。

3 结论

通过两步高温固相法首次制备了 Mn²⁺敏化 Eu²⁺的 BaSi₂O₂N₂: Eu²⁺, xMn²⁺(x=0,0.01,0.02,0.03,0.04) 荧光 粉, Mn²⁺掺杂显著提高了荧光粉的发光强度, 当 Mn²⁺浓度 x=0.02 时, 其发光强度提高了 46%. 采用 UITERT 公式 首次计算了 Eu²⁺进入 BaSi₂O₂N₂晶体的发射波长, 其计算结果与实验测试值相近, 研究表明 BaSi₂O₂N₂: Eu²⁺, Mn²⁺ 可被蓝光或近紫外光有效激发, 可用于白光 LED 照明领域, Mn²⁺离子对荧光粉发光强度的有效提高对于提升 其他氮氧化物荧光粉体系光学性能研究具有较大的研究价值。

参考文献:

- [1] TAKADA T, XIE R J, SUEHIRO T, et al. Nitride and Oxynitride Phosphors for White LEDs: Synthesis, New Phosphor Discovery, Crystal Structure[J]. Progress in Solid State Chemistry, 2018, 59:41–51.
- [2] WU D, LIU L, DUAN H, et al. A Comparison Research on Replacements of Ba^{2+} by Lu^{3+} and Ba^{2+} –Si⁴⁺ by Lu^{3+} –Al³⁺ in $BaSi_2O_2N_2$: Eu Phosphors[J]. Journal of Rare Earths, 2022, 40(01): 20–28.
- [3] SONG X F, FU R L, AGATHOPOULOS S, et al. Sythesis of BaSi₂O₂N₂: Ce³⁺, Eu²⁺ Phosphor and Determination of Their Luminescence Properties[J]. J. Am. Ceram. Soc. , 2011,94(02):501–507.
- [4] MARKUS S, TOBIAS R, OLIVER O, et al. Unexpected Luminescence Properties of Sr_{0.25}Ba_{0.75}Si₂O₂N₂; Eu²⁺—A Narrow Blue Emitting Oxonitridosilicate with Cation Ordering[J]. Chem. Eur. J. ,2012,18(42):13446–13452.
- [5] ANOOP G, CHO I H, SUH D W, et al. Luminescence Characteristics of Sr1-xBa_xSi₂O₂N₂: Eu²⁺ Phosphors for White Light Emitting Diodes[J]. Physica Status Solidi A, 2012, 209(12): 2635–2640.
- [6] 王灵利, 倪海勇, 张秋红. LED 用绿色荧光粉 BaSi, N, O, : Eu²⁺的发光和封装性能[J]. 发光学报, 2012, 33(05): 465-469.
- [7] JONAS B, KOEN V, ADRIE J, et al. Persistent Luminescence in MSi₂O₂N₂: Eu Phosphors [J]. Optical Materials Express, 2012, 2(03): 341–349.
- [8] MAHLIK S, BARZOWSKA J, SZCZODROWSKI K, et al. Enhancement of SrSi₂O₂N₂: Eu²⁺ Phosphor by Means of Oxygen to Nitrogen Control[J]. Journal of Alloys and Compounds, 2021, 884(05):161047.
- [9] LIN J, LIU Y. The Preparation of $SrSi_2O_2N_2$: Eu^{2+} and $Sr_2Si_5N_8$: Eu^{2+} Phosphors by a Direct Silicon Nitridation Process and $Sr(NO_3)_2$ as Strontium and Oxygen Sources[J]. Materials Chemistry and Physics, 2023, 297(01): 127317.

- [10] MIN X, HU M, YANG Y, et al. Effects of Fluxes on Preparation and Luminescence Properties of CaSi₂O₂N₂; Eu²⁺ Phosphors[J]. Optical Materials, 2021, 117: 111203.
- [11] Uitert L G V. An Empirical Relation Fitting the Position in Energy of the Lower D-Band Edge for Eu²⁺ or Ce³⁺ in Various Compounds[J]. Journal of Luminescence, 1984, 29(05-06): 1-9.
- [12] 李翠林, 白高峰, 马润杰, 等. ZnFe₂O₄@Cu-MOF催化剂的制备及其光催化性能研究[J]. 新疆师范大学学报(自然科学版), 2024, 43(04):11-19.

Preparation of BaSi₂O₂N₂: Eu²⁺, Mn²⁺ Phosphor and Discussion of Crystallographic Sites of Eu²⁺

WANG Jiang-tao1, LI Yuan-yuan1, CAO Zhi1, LI Lang-kai2, MA Bao-liang1, WANG Hao-hao1*

(1. College of Science, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China;

2. Guangdong Keyu Photoeletric Co., Ltd., R&D Department, Zhaoqing, Guangdong, 526500, China)

Abstract: $BaSi_2O_2N_2$: Eu^{2+} , Mn^{2+} phosphor was prepared by a heterogeneous precipitation method. The crystal structure, particle morphology, and luminescent properties of the prepared phosphors were investigated by photoluminescence spectroscopy (PL), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that PL spectra exhibit the broad-band characteristic of Eu^{2+} d-f transition, with emission spectra peaks at 490 nm and excitation spectra covering 370~470 nm, matching near-ultraviolet and blue LED chips. The doping of Mn^{2+} did not alter the crystal structure and spectral shape of $BaSi_2O_2N_2$: Eu^{2+} phosphor, but the luminescence intensity was clearly enhanced. When the doped concentration of Mn^{2+} was 0.02, the PL intensity increased by 46%. The surface morphology of the prepared phosphor was irregularly shaped. The crystallographic site of Eu^{2+} in $BaSi_2O_2N_2$: Eu^{2+} was discussed by utilizing the UITERT empirical formula, and the calculated theoretical value of 489 nm is consistent with the experimental observed value of 490 nm.

Keywords: Nitrogen (Oxygen) Compounds; Rare-earth doping; Solid-state reaction; Crystallographic lattice site

(上接第26页)

Open Experimental Design for the Preparation of Fluorinated Compounds Using Green Electrochemical Synthesis Technology

WANG Pei-long, GAO Hui, WANG Fei, LIU Gen, WANG Yong-xiang

(School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China)

Abstract: To further cultivate the practical ability and innovative thinking of undergraduate students majoring in chemistry, an open experiment is designed for the preparation of fluorinated compounds using green electrochemical synthesis technology, to innovate the method of green synthesis of fluorinated compounds, to adde a literature search section, to screen the optimal reaction conditions, and to synthesize fluorinated compounds through more environmental friendly methods finally. This open experiment makes reasonable use of laboratory resources, enhances students' ability to innovate and explore experiments, and independently analyze and solve problems. It integrates cutting–edge knowledge of science and technology into undergraduate experimental teaching, laying a foundation for students to independently carry out scientific research of green organic synthesis in the future. This type of open experiment has innovated experimental teaching methods, improved the teaching system, and played a significant role in improving the effectiveness of organic chemistry experimental teaching in universities.

Keywords: Green synthesis; Fluorine compounds; Open experiment