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摘　要：正则长波方程是最重要的非线性偏微分方程之一。文章提出求解正则长波方程的 Chebyshev 谱法，采用 Chebyshev-Gauss-

Lobatto 配点，利用 Chebyshev 多项式构造导数矩阵，将一维和二维的正则长波方程近似为常微分方程，证明了正则长波方程的离散 Chebyshev

谱法的误差估计，采用高阶 ODE 求解器进行求解。将该方法得到的数值结果与精确解进行比较，验证了方法的有效性，与其他方法相比，本研

究的数据结果具有较高的精确度。
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谱方法［1］是配点法的一种，选取全域的函数作为基底，即这些基底在整个实数域上大部分非零。从函数
近似角度看，谱方法可以分为 Fourier 谱法［2］、Chebyshev 谱法［3］和 Legendre 谱法［4］，其中 Fourier 谱法适用于周
期性问题，Chebyshev 谱法和 Legendre 谱法适用于非周期问题，这些方法的基础是建立空间基函数。

正则长波（RLW）方程是一个重要的非线性偏微分方程，其在流体力学、孤立子理论、浅水波等离子体物
理及基本粒子物理等领域有着广泛的应用，与著名的 KdV 方程有广泛的联系，也用来研究孤子现象。RLW
方程的广义形式定义为

ut + ux + εupux - μuxxt = 0, ( x,t ) ∈ R × [ 0,T ] （1）
其中，u ( x,t ) 为波域，ε和μ为正参数，p为正整数，t为时间。边界条件表示为当 x → ±∞时，u → 0.

当 p = 1 时，式（1）变为常见的 RLW 方程

ut + ux + εuux - μuxxt = 0 （2）
当 p = 2 且ε = 6 时，式（1）变为修正的正则长波方程（MRLW 方程）

ut + ux + 6u2ux - μuxxt = 0 （3）
此外，对称正则方程（SRLW 方程）与 RLW 方程非常相似，其在 x和 t上显对称导数

ì
í
î

ut + ρx + uux - uxxt = 0
ρt + ux = 0 （4）

二维的 RLW 方程为

∂u ( x,y,t )
∂t + ∂u ( x,y,t )

∂x + ∂u ( x,y,t )
∂y - ∂

∂t ( )∂2u ( x,y,t )
∂x2 - ∂

∂t ( )∂2u ( x,y,t )
∂y2

                                                     +u ( x,y,t ) ∂u ( x,y,t )
∂x + u ( x,y,t ) ∂u ( x,y,t )

∂y = 0, ( x,y ) ∈ Ω, 0 ≤ t ≤ T （5）
目前，有许多求解 RLW 方程的方法。Salih 等人［5］研究了有限差分格式的三次三角 b 样条方法求解

MRLW 方程的配点法。Hammad 等人［6］在时间和空间上使用 Chebyshev-Gauss-Lobatto 节点，提出了求解广
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义 RLW 方程的 Chebyshev-Chebyshev 谱配点法。Guo 等人［7］提出了 RLW 方程的 Fourier 谱法。Behnood 等

人［8］使用 Legendre 谱元法对 RLW 方程进行空间离散，并采用 Crank-Nicolson 格式在时间方向上进行离散。

Shokri 等人［9］通过径向基函数的无网格法对 RLW 方程进行研究。王小飞等人［10］对 RLW 方程的三次配点法

进行研究，分析了 RLW 在该方法下的半离散格式的收敛性，并通过向后 Euler 法研究该方程的全离散格式的

误差估计。Hassan 等人［11］在空间上采用 Fourier 谱法，时间上采用跳蛙格式，对 RLW 方程的孤波进行研究。

Bakhoday-Paskyabi 等人［12］在空间上采用 WG 法，使用周期化标度函数对 RLW 方程的半离散方程进行研究，

并探究其收敛性，再通过 FFT 变换和 Runge-Kutta 法对方程进行求解。唐致娣等人［13］建立了广义 RLW 方程

的 Chebyshev-Legendre 谱方法的离散格式，并对其稳定性和收敛性进行分析。Dehghan 等人［14］采用局部径向

基函数有限差分的无网格法，通过合适的形状参数，对一维和二维的 RLW 方程进行求解。Ebrahimijahan 等

人［15］采用有限差分格式对时间导数进行近似，再利用积分径向基函数法逼近空间导数，对二维 RLW 方程

进 行 求 解 。Gao 等 人［16］对 RLW 和 SRLW 方 程 在 空 间 上 采 用 Galerkin 法 ，根 据 向 后 Eluer 公 式 和 外 推 的

Crank-Nicolson 格式，使用 Brouwer 不动点定理证明了其数值解的存在性和唯一性。蒋菊霞等人［17］提出了二

维 RLW 方程的三层守恒差分格式，证明了差分解的存在唯一性和二阶收敛性以及无条件稳定性。

文章使用 Chebyshev 谱法求解 RLW 方程，采用 Chebyshev-Gauss-Lobatto 插值点构造 Chebyshev 微分矩

阵，对空间变量采用微分矩阵进行离散，使用 Picard 定理对 RLW 方程的半离散格式进行收敛性和稳定性分

析。通过 Chebyshev 谱法将偏微分方程转化为常微分方程，对于一维的使用 ODE 求解器对方程进行求解，二

维的则使用 Runge-Kutta 法进行求解。

1 RLW 方程的 Chebyshev 谱法

Chebyshev 多 项 式 是 在 区 间［-1，1］上 关 于 Chebyshev 权 函 数 w ( x ) = (1 - x2 )-1
2 的 正 交 多 项 式 系 。 设

Tk ( x ) = cos (k arccos ( x ) ) 为 k次的第一类 Chebyshev 多项式，选取N+1 个 Chebyshev-Gauss-Lobatto 节点，则

xj = cos ( )jπ
N , j = 0,1,…,N

如果u ( x ) 是一个连续可微函数，那么其在 Chebyshev-Gauss-Lobatto 插值点处近似为

uN ( x ) =∑
k=0

N

akLk ( x )
Lk ( x ) = 2

Nμk
∑
j=0

N 1
μj
Tk ( xj )Tk ( x ), k = 0,1,...,N, ak = u ( xk )

其中

μj = ì
í
î

2, j = 0, N
1, 1 ≤ j ≤ N - 1

值得注意的是，对于 k, j = 0,1,...,N，Lagrange 插值具有 Kronecker 内积

Lk ( xj ) = ì
í
î

0, j ≠ k
1, j = k

为了近似u ( x ) 的一阶导数，通过微分插值函数得到

uNx ( x ) =∑
k=0

N

u ( xk ) dLk ( xj )
dx =∑

k=0

N

Dkju ( xk )
得到 (N + 1) × (N + 1) 维的导数矩阵DN

DN =

ì

í

î

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

2N 2 + 1
6 k = j = 0

μk
μj

(-1) i+j
( tk - tj ) k ≠ j
-xj

2(1 - t2j ) 1 ≤ k = j ≤ N - 1

- 2N 2 + 1
6 k = j = N
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对于一维的 RLW 方程
∂
∂x → DN, ∂2

∂x2 → D2
N, ∂3

∂x3 → D3
N,…

由此方法得到的DN在区间 [-1,1 ]上，为了使其满足求解区间 [-a,b ]，需要对DN进行缩放，即
∂
∂x → (2/b - a )DN， ∂n

∂xn → [(2/b - a )DN ]n
函数u ( x ) 的导数为

u'( x ) = DNu,u''( x ) = D2
Nu （6）

其中，u ( x ) = (u ( x0 ),...,u ( xN ) ) T.
利用 Chebyshev 谱法过程生成的矩阵，式（1）变为

u t + DNu + εupDNu - μD2
Nu t = 0 （7）

也可以写为

( I - μD2
N )u t = -DNu - εupDNu （8）

以上方程是该方法生成的 ODE 系统。为了在时间上离散，使用任何 ODE 求解器，初始向量为u ( x,0 ). 
对于二维的 RLW 方程

∂
∂x → Lx = (2/b - a )DNx ⊗ INy+1

∂
∂y → Ly = INx+1 ⊗ (2/b - a )DNy

∂2

∂x2 → Lxx = [ (2/b - a )DNx ]2 ⊗ INy+1

∂2

∂y2 → Lyy = INx+1 ⊗[ (2/b - a )DNy ]2

其中，x方向的离散点数为 (Nx + 1)，y方向的离散点数为 (Ny + 1)，INx+1 和 INy+1 分别为 Nx + 1 阶单位矩阵和

Ny + 1 阶单位矩阵，则式（5）可变为

( I - Lxx - Lyy )u t = -Lxu - Lyu - uLxu - uLyu （9）
将函数u ( x,y ) 离散化为 (Nx + 1) × (Ny + 1) 维向量u

u (Nx+1) × (Ny+1) =
æ

è

ç

ç

ç

ç
çç
ç
ç

ç

ç
ö

ø

÷

÷

÷

÷
÷÷÷
÷

÷

÷
u00 u01 ⋯ u0Ny
u10 u11 ⋯ u1Ny⋮ ⋮ ⋱ ⋮
uNx0 uNx1 ⋯ uNxNy

在时间方向上采用四阶 Runge-Kutta 法对二维的 RLW 方程进行求解，将式（9）变为

ì

í

î

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

u t = F (u, t )
k1 = F ( t, un )

k2 = F ( )t + dt2 , un + 1
2 k1

k3 = F ( )t + dt2 , un + 1
2 k2

k4 = F ( )t + dt2 , un + k3

un+1 = un + dt6 ( )k1 + 2k2 + 2k3 + k4

2 收敛性和稳定性分析

设 I = (-1,1)，L2
ω ( I ) 是可测函数的空间，定义 Sobolev 函数空间Hm

ω ( I ) 和范数为

Hm
ω ( I ) = { }u: ∂iu

∂xi ∈ L2
ω ( I ),0 ≤ i ≤ m
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|| u
Hm
ω ( I ) = ( )∑

k=min (m,N+1)

m

 ∂k
xu

2
ω

1 2
,  u

Hm
ω ( I ) = ( )∑

k=0

m

 ∂k
xu

2
ω

1 2

将所有次数不超过N的多项式组成的空间记为PN，引入正交映射PN:L2
ω ( I ) → PN，则对任意的u ∈ L2

ω ( I )，都有

(u - PNu,ϕ )ω = 0, ∀ϕ ∈ PN

通过 Picard 迭代定理对一维 RLW 方程的半离散格式的收敛性及稳定性进行分析，给出式（1）的半离散

格式，对任意的uN ∈ PN，v ∈ PN，有

(uNt,vN ) + (uNx,vN ) + ε (upNuNx,vN ) - μ (uNxxt,vN ) = 0 （10）
引理 1［1］ 假设u ∈ L2

ω ( I )，对任意的 0 ≤ μ ≤ m，存在一个与u和N无关的常数C，使得

 u - PNu μ
≤ CNμ-m u

m
,  PNu μ

≤ C u
μ

引理 2 设u0 ∈ L2
ω ( I )，0 < ε ≤ 1，则式（10）有唯一解uN ( t ) 满足以下不等式

 uN
2 + μ || uN

2
1 ≤ eεT up+10

2, ( )2 - ε ∫0

T

 uNx
2
dt ≤ (εeεT )  up+10

2 +  u0
2 + μ || u0

2
1 （11）

证明 令式（10）中的 vN = uN，有
1
2
d
dt

 uN
2 + 1

2 μ
d
dt

|| uN
2
1 +  uNx

2 ≤ ε ( )upNuNx,uN （12）
其中

ε ( )upNuNx,uN = -ε ( )upNuN,uNx ≤ ε up+1
N  uNx ≤ ε2  up+1

N

2 + ε2  uNx
2

（13）
将式（13）代入式（12），得

d
dt

 uN
2 + μ ddt || uN

2
1 + ( )2 - ε  uNx

2 ≤ ε up+1
N

2
（14）

使用 Gronwall 不等式得到

 uN
2 + μ || uN

2
1 ≤ eεt up+1

N (0 ) 2 ≤ eεT up+10
2

对式（14）从 0 到T进行积分，得到

 uN
2 -  uN (0 ) 2 + μ ( )|| uN

2
1 - || uN (0 ) 2

1 + ( )2 - ε ∫0

T

 uNx
2
dt ≤ ε ∫0

T

 up+1
N

2
dt

由此，得出结论

( )2 - ε ∫0

T

 uNx
2
dt ≤ (εeεT )  up+10

2 +  u0
2 + μ || u0

2
1

引理 3 设 u ( t ) 是式（1）的近似解，uN ( t ) 是式（10）的解，u0 ∈ L2
ω ( I )，如果 u ∈ L2

ω ( I )，那么存在一个常数C，

使得

 eN
2 + μ || eN

2
1 ≤ C (N-m u0

2p+2 +  eN (0 ) 2 )
证明 令 eN = PNu ( t ) - uN ( t ),ηN = u ( t ) - PNu ( t )，分别将u ( t )，uN ( t ) 代入式（1）和式（10）中相减得到

(eNt,vN ) + (eNx,vN ) + ε (PN (upux ) - upNuNx,vN ) - μ (eNxxt,vN ) = 0 （15）
令式（15）中 vN = eN，得

1
2
d
dt

 eN
2 + 1

2 μ
d
dt

|| eN
2
1 ≤  eNx

2 + ε ( )PN (upux ) - upNuNx,eN （16）
其中

PN (upux ) - upNuNx = PN (upux ) - upux + upux - PN (upuNx ) + PN (upuNx ) - upNuNx
                                                     ≤  ux  PNup - up +  up  ux - PNuNx +  uNx  PNup - upN
                                                     ≤ CN-m ux  up + CN-m up  ux

2 +  uNx  PNup - upN
其中

                    PNup - upN =  PNup - up + up - (PNu ) p + (PNu ) p - upN                                              
                                       ≤  PNup - up +  up - (PNu ) p +  (PNu ) p - upN
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    up - (PNu ) p =  (u - PNu ) (up-1 + (PNu ) p-1 ) + (uPNu ) (up-2 - (PNu ) p-2 )
                  ≤  (u - PNu ) (up-1 + (PNu ) p-1 + (uPNu ) (up-3 + (PNu ) p-3 ) + ⋯ + (uPNu ) p-3 (u + PNu ) ) + 






(uPNu ) p-3

2

                  ≤ CN-m u  up-1
∞

+ C up-3

同理

 (PNu ) p - upN ≤  ηN  up-1
N ∞

+ C up-3
N

所以得到

 PNup - upN ≤ C (N-m u +  up-3 )
 PN (upux ) - upNuNx ≤ C (N-m up +  u2 +  u )

将上式代入式（16），使用引理 2，再利用 Gronwall 不等式得到

 eN
2 + μ || eN

2
1 ≤ C (N-m u0

2p+2 +  eN (0 ) 2 ) （17）
定理 1 设u ( t ) 是式（1）的解，uN ( t ) 是式（10）的解，u0 ∈ L2

ω ( I )，如果u ∈ L2
ω ( I )，那么存在一个常数C，使得

 u ( t ) - uN ( t ) ≤ CN-m + C eN (0 ) 2

证明 使用引理 1 和引理 3，有

 u ( t ) - uN ( t ) ≤  ηN ( t ) +  eN ( t ) ≤ CN-m u + C (N-m u0
2p+2 +  eN (0 ) 2 ) ≤ CN-m + C eN (0 ) 2

3 数值实验

通过以下两种误差来衡量计算结果的准确性，

L∞ =  u - u͂
∞

= max1≤i≤N || ui - u͂i ， L2 = h∑
i=0

N

|| ui - u͂i 2

其中，ui和 u͂i分别表示为精确解和近似解。

例 1 考虑单波的 RLW 方程，在式（1）中取 p=ε=μ=1，边界条件当 x → ±∞时，u →0.
ut + ux + uux - uxxt = 0 （18）

精确解为

u ( x,t ) = 3c sech2 ( p ( x - x0 - (1 + εc ) t ) )
其中，3c是起始点为 x0 的单孤波振幅，v = 1 + εc为波速，p = εc/4v (1 + εc ) ，初始条件为

u ( x,0 ) = 3c sech2 ( p ( x - x0 ) )
取N=400，即 401 个 Chebyshev 节点，在 c = 0.1，x0 = 0，Ω = [-100，100 ]，dt=0.2，T=5 条件下计算数值解和

精确解。由图 1 和图 2 可以发现数值解与精确解吻合度较高。图 3 给出了当 dt=0.2 时，T=5、10、15、20 的精确

解和数值解，随着时间的推移，方程的孤波在［-100，100］内向右移动，进一步证明数值解的正确性。表 1 给

出了 dt=0.1，h=0.1，Ω ∈ [-40,60 ]时T取不同值的两种误差。与 Legendre 谱元法［8］对式（14）的解的方法相比，

误差减小，并且当T增大时误差也随之增大。在研究中发现，振幅 3c的变化也会影响误差，为此，取h=0.125，

通过表 2 可以看到，随着 c的减小，误差也会减小。

表 1 T在不同时刻的两种误差

T

5
10
15
20
25

Chebyshev 谱法（N=100）
L2 × 103

2.6
5.1
7.6

10.0
12.4

L∞ × 103

0.8101
1.6000
2.4000
3.2000
3.9000

Legendre 谱元法［8］（N=400）
L2 × 103

1.2270
8.7683

24.6970
47.6650
75.8920

L∞ × 103

0.1971
1.1635
2.9256
5.0842
7.3959
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表 2 c 取不同值时两种误差的变化（h=0.125）
c

10-1

10-2

10-5

L2

1.8e-03
5.3038e-06
4.8205e-07

L∞

1.7e-03
3.8327e-06
1.212e-07
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图 1 例 1 的数值解
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图 2 例 1 的精确解
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图 3 dt=0.2，T 在不同时刻的精确解和数值解

例 2 一维修正的 RLW 方程，在式（1）中取ε = μ = 1，p = 2，精确解为

u ( x,t ) = 3c sech2( )1
2

c
1 + c ( x - (1 + c ) t - x0 )

初始条件为u ( x,0 ) = 3c sech2( )1
2

c
1 + c ( x - x0 ) ，边界条件为u (0,t )=u (100,t )=0.

取 x0=40，N=500，c=0.09，dt=0.1，T=5，h=0.2，图 4 给出了通过 Chebyshev 谱法求解该问题的数值解。图 5
是该方程的精确解，对比发现数值解和精确解的吻合度较高。表 3 给出N=100，dt=0.1，c=0.09 的情况下，不

同时刻的误差与其他文献中对该方程的求解相比，Chebyshev 谱法求解精度高。

表 3 dt= 0.1，N = 100，c = 0.09 不同时刻的误差

T

5
10
15
20

Chebyshev 谱法

L2
0.0172
0.0345
0.0518
0.0691

L∞
0.0193
0.0428
0.0636
0.0803

配点法［5］

L2
0.072146
0.142238
0.208868
0.271397

L∞
0.024671
0.049605
0.072388
0.092359
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例 3 考虑二维的 RLW 方程式（5），其精确解为

u ( x,y,t ) = q2 sech2é

ë

ê
êê
ê
ê
ê ù

û

ú
úú
ú
ú
úq

2p ( )x + y - vt - x0 - y0

其中，q = 3( v - 2)，p = 6v.
取 v=2.06，N=100，dt=0.1，图 6 是T=10 的数值解，图 7 是T=20 的数值解。从表 4 可以看出，当 Chebyshew 节

点达到 60 时，Chebyshev 谱法的误差小于局部径向基函数有限差分法，并且当 Chebyshev 节点数量越多时，误

差越小。
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表 4 Chebyshev 谱法与局部径向基函数有限差分法的 L∞ 误差范数的比较

t

10
20

Chebyshev 谱法

L∞（N=30）
2.30e-03
3.00e-03

L∞（N=40）
2.20e-03
2.60e-03

L∞（N=50）
2.00e-03
2.40e-03

L∞（N=60）
1.90e-03
2.20e-03

局部径向基函数有限差分法［14］

L∞（N=90）
2.0083e-03
5.9434e-03

4 结论

文章使用 Chebyshev 谱法对 RLW 方程进行数值求解，给出了该方法求解一维和二维 RLW 方程的数值解

和精确解，讨论了一维 RLW 方程 Chebyshev 谱方法的收敛性和稳定性。研究发现 Chebyshev 谱法可以在较

少的 Chebyshev 点处得到比其他方法更小的误差，一维 RLW 方程孤波随着时间向右移动，进一步证明了该方

法的准确性。
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The Solution of the Regularized Long Wave Equations Using the 
Chebyshev Spectral Method

LUO Yan，SONG Ling-yu*

（College of Science，Chang'an University，Xi'an，Shaanxi，710064，China）

Abstract：The regularized long wave equation is one of the most important nonlinear partial differential 
equations. In this paper，the Chebyshev spectral method is proposed to solve the regularized long wave 
equation，the Chebyshev polynomial and Chebyshev-Gauss-Lobatto are used to construct the derivative matrix，and 
the one-dimensional and two-dimensional regularized long wave equations are approximated as ordinary 
differential equations to prove the error estimation of the discrete Chebyshev spectral method and the solution is 
performed using a higher-order ODE solver.The numerical results obtained by the method are compared with the 
exact solution，and the effectiveness of the method is verified.The data results in this paper are more accurate than 
that of other methods.

Keywords：Regularized long wave equation；Chebyshev spectral method；Chebyshev-Gauss-Lobatto point；
Chebyshev polynomials
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